Browsed by
Category: Spines

A Note on Russell’s Paradox

A Note on Russell’s Paradox

Topics in mathematics very frequently rely on set theory (I am hard-pressed to quickly think of one that doesn't). Set theory itself is a very abstract area of study. Even so, mathematicians built it on axioms (self-evident truths taken as fundamental starting points), and, of course, debate continues to this day as to which axioms…

Welcome to GF(4)

Welcome to GF(4)

Everyone has solved some version of a linear system in either high school or college mathematics. If you've been keeping up with some of my other posts on algebra, you know that I'm about to either take something familiar away, or twist it into a different form. This time is no different; we're going to…

A Partition by any Other Name

A Partition by any Other Name

I promise I'm actually a probability theorist, despite many of my posts being algebraic in nature. Algebra, as we've seen in several other posts , elegantly generalizes many things in basic arithmetic, leading to highly lucrative applications in coding theory and data protection.  Some definitions in mathematics may not have obvious "practical use", but turn out to yield theorems and results so…

Time Series Analysis Part 1: Regression with a Twist

Time Series Analysis Part 1: Regression with a Twist

We're surrounded by time series. It's one of the more common plots we see in day-to-day life. Finance and economics are full of them - stock prices, GDP over time, and 401K value over time to name a few. The plot looks deceptively simple; just a nice univariate squiggle. No crazy vectors, no surfaces, just…

Poisson Processes and Data Loss

Poisson Processes and Data Loss

There are many applications for counting arrivals over time. Perhaps I want to count the arrivals into a store, or shipments into a postal distribution center, or node failures in a cloud cluster, or hard drive failures in a traditional storage array. It's rare that these events come neatly, one after the other, with a…

Reduce the Problem: Permutations and Modulo Arithmetic

Reduce the Problem: Permutations and Modulo Arithmetic

We've all seen permutations before. If you have ten distinct items, and rearrange them on a shelf, you've just performed a permutation. A permutation is actually a function that is performing the arrangement on a set of labeled objects. For simplicity, we can just number the objects and work with permuting the numbers.  (more…)

The Central Limit Theorem isn’t a Statistical Silver Bullet

The Central Limit Theorem isn’t a Statistical Silver Bullet

Chances are, if you took anything away from that high school or college statistics class you were dragged into, you remember some vague notion about the Central Limit Theorem. It's likely the most famous theorem in statistics, and the most widely used. Most introductory statistics textbooks state the theorem in broad terms, that as the…

Cauchy Sequences: the Importance of Getting Close

Cauchy Sequences: the Importance of Getting Close

I am an analyst at heart, despite my recent set of algebra posts. Augustin Louis Cauchy can be argued as one of the most influential mathematicians in history, pioneering rigor in the study of calculus, almost singlehandedly inventing complex analysis and real analysis, though he also made contributions to number theory, algebra, and physics.  One…