Browsed by
Category: Spines

Expecting the Unexpected: Borel’s Paradox

Expecting the Unexpected: Borel’s Paradox

One of the best ways to shorten a proof in statistics or probability is to use conditioning arguments. I myself have used the Law of Total Probability extensively in my work, as well as other conditioning arguments in my PhD dissertation. Like many things in mathematics, there are subtleties that, if ignored, can cause quite…

Using Boolean Algebra to Find all Maximal Independent Sets in a Graph

Using Boolean Algebra to Find all Maximal Independent Sets in a Graph

Graph theory may be one of the most widely applicable topics I've seen in mathematics. It's used in chemistry, coding theory, operations research, electrical and network engineering, and so many other places. The subject is mainly credited to have begun with the famous  Seven Bridges of Königsberg problem posed by Leonard Euler in 1736. Frank Harary…

Beyond Cookbook Mathematics, Part 2

Beyond Cookbook Mathematics, Part 2

The previous article discussed the importance of definitions to mathematical thought. We looked at a definition (of an end-vertex in a graph), and picked it apart by finding multiple ways to look at it. We also directly used the definition in a practical manner to find “weak links” in a network. This time, we’ll look…

Beyond Cookbook Mathematics, Part 1

Beyond Cookbook Mathematics, Part 1

This post is due to the requests of several independent engineers and programmers. They expressed disappointment at their mathematics education and its failure to impart a deeper understanding of the formulas and algorithms they were taught to use.  This also reflects my observations of teaching university mathematics over the years. I started as a TA…

Simulating Soundscapes Using Convolutions

Simulating Soundscapes Using Convolutions

One of the most powerful areas of electrical engineering that flourished in the 20th century is the field of signal processing. The field is broad and rich in some beautiful mathematics, but by way of introduction, here we'll take a look at some basic properties of signals and how we can use these properties to…

Sequences & Tendency: Topology Basics Pt. 2

Sequences & Tendency: Topology Basics Pt. 2

Introduction In my previous post I presented abstract topological spaces by way of two special characteristics. These properties are enough to endow a given set with vast possibilities for analysis. Fundamental to mathematical analysis of all kinds (real, complex, functional, etc.) is the sequence. We have covered the concept of sequences in some of our…

Paper Review: Active Queue Management with Non-Linear Packet Dropping Function

Paper Review: Active Queue Management with Non-Linear Packet Dropping Function

As promised in the previous article, I plan to review Reference 2, Active Queue Management with Non-Linear Packet Dropping Function, by D. Augustyn, A. Domanski, and J. Domanska, published in HET-NETs 2010, which discusses a change in the structure of the packet drop probability function using the average queue length in a buffer. I mentioned previously that…

Networking Mathematics: Random Early Detection and TCP synchronization

Networking Mathematics: Random Early Detection and TCP synchronization

Computer networks are something most of us take for granted--speed, reliability, availability are expectations. In fact, network problems tend to make us very angry, whether it's dropped packets (yielding jittery Skype calls), congestion (that huge game download eating all the bandwidth), or simply a network outage. There's an awful lot going on underneath the hood…

Little’s Law: For Estimation Only

Little’s Law: For Estimation Only

I had been intending on writing some posts on queuing theory for a while now, as this branch is the closest to my research interests and was the spark that sent me down the road that eventually led to my PhD dissertation. Most are quite familiar with the concepts of queuing theory, at least intuitively,…

Building a Ground Floor: Topology Basics Pt. 1

Building a Ground Floor: Topology Basics Pt. 1

Like some other terms in mathematics ("algebra" comes to mind), topology is both a discipline and a mathematical object. Moreover like algebra, topology as a subject of study is at heart an artful mathematical branch devoted to generalizing existing structures like the field of real numbers for their most convenient properties. It is also a…