Browsed by
Month: June 2018

On the Essential Nature of Foundations

On the Essential Nature of Foundations

We get asked frequently a valid question: why fund our research? Why fund mathematics research, when I can’t see what the finished product will be, and you can’t give me a guaranteed code library next quarter?

I’m going to use an analogy of building and stray from my usual temptation to use math analogies. Every house built (well, every house that will last more than 5 years) sits on a foundation. That foundation is unseen, unsexy, and isn’t part of the curb appeal a realtor uses to sell the house. However, no amount of curb appeal can overcome a crumbling or poorly built foundation, and one good natural disaster ends the house. 

If one is going to build a house, one should ensure the foundation is built well and funded appropriately, otherwise any work built upon it doesn’t stand a chance in the long run. When we’re asked the “value prop” of our research, much of the questions come from a misconception of research funding. Funding research isn’t like funding a quick consulting project, or an app for the App Store. What is really being asked is for the value proposition of the foundation for a house. You’re not funding flashy curb appeal and a new stone facade for a house, you’re funding the very foundation the house will stand on.  A good foundation can support many stories, up to the highest skyscrapers. 

The next question one would ask when building a house (or funding research) is: “When will the house be completed?” 

The answer: it depends. 

I’ll illustrate with some examples. We have a project that proposes a different method to detect anomalies in time series based on using fuzzy numbers. (Our new “project pages” feature is coming soon, and we’ll update here with links.) In this case, enough infrastructure has been laid (like electrical lines and water and sewer pipes), that we can not only immediately begin pouring a foundation, but we can also clearly see how the house will look at completion. This is like building in a city on an empty lot. In this case, I can give a reasonable completion date for certain stages of the project of around 1-2 years, with the framework in 6 months or less. Of course, just as in building a house, some small things may come up to adjust the exact timeframe, but the path to completion is fairly clear. 

Now, suppose you’re a bit bolder. You desire to fund something less certain and less concrete, so to speak, such as pure research in, say, dependency theory . This would be analogous to wanting to purchase land in rural Wyoming and building a house there. Because no one already resides there, you can purchase quite a bit of land (a broad research direction) reasonably inexpensively. However, in this location, there are no sewer lines, no electrical wires, no city-style infrastructure to work with. The land needs to be surveyed and understood before selecting a building site, and wells need to be drilled, a septic tank installed, and electrical lines extended, in addition to the foundation of the house itself. There’s a reason most lack the courage to build here. This is a multi-year commitment, but fortune favors the bold.

One thing this type of building allows for is surprises. Perhaps during the survey of the land, you find valuable mineral deposits that will net you an unexpectedly large profit when you sell or lease the mineral rights to a mining company, thus recuperating your initial land purchase investment almost immediately and providing decades of passive income. You decide to develop that in addition to building the house, which delays the house building slightly. 

It’s also possible to find an underground river close to the surface on the site you originally intended to build, thus forcing you to relocate the site of the house 1000 feet north. Those are the less-desirable surprises, but now you can drill a well in that original spot. All of this is part of the exploratory nature of mathematical and fundamental research so many tend to scoff at as “wandering” and “impractical.”

One cannot employ the same “laser focus” building techniques in an unknown area as one would on a city lot. While the prospecting may not be obviously applicable to building the house, it’s essential in remote areas. Finding pitfalls and potential issues for a building site can save hundreds of thousands of dollars later. Finding mineral deposits can bring enormous unexpected wealth. 

Funding pure math research is purchasing land in rural Wyoming. It takes patience and courage, but can bring incalculable wealth and a set of foundations sturdy enough to build an entire city. Funding applied mathematics is building the foundation of a house on a city lot. The Math Citadel works in both areas, and also commits to helping you build the framework as well, which is the second most important feature of a good house. 

Fancy windows, pretty shingles, nice facades, and landscaping are all features of a house that makes it beautiful and attractive to passersby, and increases the value of your home. But all those are meaningless if the foundation is cracked and the framework rotten. We encourage you directly to consider the real value-proposition of mathematics research. Our business is in building foundations that are immortal. No matter how many times you update the landscaping or other surface features to stay current and modern, the foundation will still stand. 

We offer pricing far below traditional funding methods, with greater flexibility and agility. Our foundations don’t come with heavy administrative overhead, and our passion guides us to leave no stone unturned while we prospect your site for any possible additional value. 

Please feel free to contact us to set up a discussion on research projects that are of interest to your business. We are happy to discuss our current directions, and we’re also happy to forge a path in an entirely new direction as well.  

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.