
APPENDIX 

Supporting Proofs 

! 

Claim. The triple ({ a, b }, + , · ) with operations defined as below, constitutes a field. 

Proof. First, it is to be shown ({ a, b }, + ) is an Abelian group.  From the table 
above at left, it is clear + is well-defined on { a, b }.  Moreover, a serves as additive 
identity, and each element is its own additive inverse.  As a and b are the only elements in 
the set, commutativity follows from the fact that a + b = b + a.  To be thorough, it must 
be verified + is associative.  This is illustrated with the following cases: 

(i)  a + (a + a) = a + a = (a + a) + a      ; 
(ii)  a + (b + a) = a + b =     b + a  = (a + b) + a ; 
(iii)  b + (a + b) = b + b = (b + a) + b      ; 
(iv)  b + (b + b) = b + a =     a + b  = (b + b) + b . 

Now, the set { a, b } is clearly closed under · , and it must be shown the nonzero 
elements (where zero element refers to additive identity, a in this case) form an Abelian 
group under · as well.  Fortunately, the only nonzero element is b, and the set { b } under 
· is trivially Abelian due to possessing a singular possible product. 

Finally, it must be shown the distributive law of + over · holds.  Happily, all 
cases can be presented thus (where a · b is written ab): 

(i)  (a + a) · a = aa = a = a + a = (aa) + (aa) ; 
(ii)  (a + b) · a = ba = a = a + a = (aa) + (ba) ; 
(iii)  (b + b) · a = aa = a = a + a = (ba) + (ba) ; 
(iv)  (a + a) · b = ab = a = a + a = (ab) + (ab) ; 
(v)  (a + b) · b = bb = b = a + b = (ab) + (bb) ; 
(vi)  (b + b) · b = ab = a = b + b = (bb) + (bb) . 

This completes the proof.                
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Claim. The fields  ({ e, o }, + , · ) and ({ 0, 1 }, +2 , · ) with operations defined as below, 1

are isomorphic. 
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 Proof.  Define a function  f : { e, o } —> { 0, 1 } by f ( e ) = 0 and f ( o ) = 1.  This way, 
it is clear f is a one to one correspondence.  Therefore, if it can be shown that for each 
choice of x and y in { e, o } the homomorphism property holds: 

f ( x + y ) = f ( x ) +2  f ( y ) ; 

f ( xy ) = f ( x ) f ( y ), 

then it follows f is an isomorphism of fields.  All possible cases are shown below. 

 (i)  f ( e + e ) = f ( e ) = 0 = 0 +2 0 = f ( e ) +2  f ( e ) ; 
 (ii)  f ( e + o ) = f ( o ) = 1 = 0 +2 1 = f ( e ) +2  f ( o ) ; 
 (iii)  f ( o + o ) = f ( e ) = 0 = 1 +2 1 = f ( o ) +2  f ( o ) ; 

 (iv)  f ( ee )  = f ( e ) = 0 = (0)(0) = f ( e ) f ( e )  ; 
 (v)  f ( eo )  = f ( e ) = 0 = (0)(1) = f ( e ) f ( o )  ; 
 (vi)  f ( oo )  = f ( o ) = 1 = (1)(1) = f ( o ) f ( o )  . 

Conclude ({ e, o }, + , · ) and ({ 0, 1 }, +2 , · ) are indeed isomorphic.     
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 The proof may be undertaken similarly for any of the examples of GF(2) in this post.1


