APPENDIX

Supporting Proofs

£

Claim. The triple $(\{a, b\}, +, \cdot)$ with operations defined as below, constitutes a field.

+	a	Ь	•	а	b
a	а	Ь	a	а	a
b	Ь	a	Ь	a	b

Proof. First, it is to be shown $(\{a, b\}, +)$ is an Abelian group. From the table above at left, it is clear + is well-defined on $\{a, b\}$. Moreover, a serves as additive identity, and each element is its own additive inverse. As a and b are the only elements in the set, commutativity follows from the fact that a + b = b + a. To be thorough, it must be verified + is associative. This is illustrated with the following cases:

(i)	a + (a + a) =	a + a	=	(a+a)+a		• •	,
(ii)	a + (b + a) =	a + b	=	<i>b</i> + <i>a</i>	=	(a + b) + a;	,
(iii)	b + (a + b) =	b + b	=	(b+a)+b		;	,
(iv)	b+(b+b) =	b + a	=	a + b	=	(b+b)+b.	

Now, the set $\{a, b\}$ is clearly closed under \cdot , and it must be shown the nonzero elements (where zero element refers to additive identity, a in this case) form an Abelian group under \cdot as well. Fortunately, the only nonzero element is b, and the set $\{b\}$ under \cdot is trivially Abelian due to possessing a singular possible product.

Finally, it must be shown the distributive law of + over \cdot holds. Happily, all cases can be presented thus (where $a \cdot b$ is written ab):

(i) $(a + a) \cdot a = aa = a = a + a = (aa) + (aa);$ (ii) $(a + b) \cdot a = ba = a = a + a = (aa) + (ba);$ (iii) $(b + b) \cdot a = aa = a = a + a = (ba) + (ba);$ (iv) $(a + a) \cdot b = ab = a = a + a = (ab) + (ab);$ (v) $(a + b) \cdot b = bb = b = a + b = (ab) + (bb);$ (vi) $(b + b) \cdot b = ab = a = b + b = (bb) + (bb).$

This completes the proof.

Claim. The fields¹ ({ e, o }, + , ·) and ({ o, 1 }, +₂, ·) with operations defined as below, are isomorphic.

+	е	0		•	е	0
е	е	0		е	е	е
0	0	е		0	е	0
			₩			
+2	0	I		•	0	I
0	0	I		0	0	0
I	I	0		I	0	I

Proof. Define a function $f: \{e, o\} \longrightarrow \{o, I\}$ by f(e) = o and f(o) = I. This way, it is clear f is a one to one correspondence. Therefore, if it can be shown that for each choice of x and y in $\{e, o\}$ the *homomorphism property* holds:

$$f(x+y) = f(x) +_2 f(y);$$

 $f(xy) = f(x)f(y),$

then it follows f is an isomorphism of fields. All possible cases are shown below.

(i)	f(e+e)	=	f(e)	=	0	=	0 + ₂ 0	=	$f(e) +_2 f(e)$;
(ii)	f(e+o)	=	f(o)	=	Ι	=	0 + ₂ I	=	$f(e) +_2 f(o)$;
(iii)	f(o+o)	=	f(e)	=	0	=	I + ⁵ I	=	$f(o) +_2 f(o)$;
(iv)	f(ee)	=	f(e)	=	0	=	(0)(0)	=	f(e)f(e)	;
(iv) (v)	f(ee) f(eo)	=	f(e) f(e)	=	0 0	= =	(0)(0) (0)(1)	=	f(e)f(e) f(e)f(o)	;;

Conclude $(\{e, o\}, +, \cdot)$ and $(\{o, 1\}, +_2, \cdot)$ are indeed isomorphic.

¹ The proof may be undertaken similarly for any of the examples of GF(2) in this post.