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Abstract
This paper generalizes the negative binomial random variable by generating it from a sequence of first-
kind dependent Bernoulli trials under the identity permutation. The PMF, MGF, and various moments
are provided, and it is proven that the distribution is indeed an extension of the standard negative
binomial random variable. We examine the effect of complete dependence of the Bernoulli trials on the
generalized negative binomial random variable. We also show that the generalized geometric random
variable is a special case of the generalized negative binomial random variable, but the generalized
negative binomial random variable cannot be generated from a sum of i.i.d. generalized geometric
random variables.
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Introduction
A binomial random variable Zn is constructed from a sequence of n Bernoulli random variables ε1, ε2, . . . , εn,
and counts the number of 1s, or ”successes” in the sequence. Mathematically, a binomial random variable
is given by Zn = ∑n

i=1 εn. A traditional binomial random variable requires an i.i.d sequence of Bernoulli
random variables. Korzeniowski [1] developed a generalized binomial distribution under the condition
that the Bernoulli sequence is first-kind dependent.

A ”different perspective”, as it were, to the binomial random variable is the negative binomial
random variable. With a binomial random variable, we fix the number of trials and count the number of
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”successes”. Suppose now we fix the number of successes as k and continue to run Bernoulli trials until
the kth success. The random number of trials necessary to get k successes is a negative binomial random
variable, and may be formulated mathematically as Vk = minn≥k(n : Zn = k). The sequence is halted when
the kth success appears, which will always be on the last trial. Thus, the event (Vk = n) is equivalent to
(Zn−1 = k− 1∧ εn = 1). A standard negative binomial distribution is constructed from an i.i.d. sequence
of Bernoulli random variables, just like the binomial random variable. The PMF is given by

P(Vk = n) =
(

n− 1
k− 1

)
pk(1− p)n−k, n ≥ k

We may also characterize the negative binomial distribution in a different way. Let Y denote the
number of additional trials beyond the minimum possible k required for k successes. Since the trials
are Bernoulli trials, Y denotes the random number of failures that will occur before the kth success is
observed. Thus, if we denote y as the number of failures, n = k + y, where k is fixed, and thus the random
variable Y with support {0,1,2, . . .} is equivalent to the previous characterization of Vk. The PMF of Y is
easily derived and given by

P(Y = y) =
(

k + y− 1
y

)
pk(1− p)y

A first-kind dependent sequence of Bernoulli trials is identically distributed but dependent [1, 3, 4], and
thus can generate generalized versions of random variables that are functions of sequences of identically
distributed Bernoulli or categorical random variables [3, 2]. This paper generalizes the negative binomial
distribution given above by allowing the Bernoulli sequence to be first-kind dependent.

1. Derivation of the PMF
Theorem 1. Let k ∈N be fixed, and ε = {ε1, ε2, . . .} be a sequence of first-kind dependent Bernoulli trials under
the identity permutation with P(εk = 1) = p and dependency coefficient δ. Define q = 1 − p,p+ = p + δq,
[p− = p− δp, q+ = q + δp, and q− = q− δq. Let Zn denote a generalized binomial random variable of length
n. Let Vk denote the random variable that counts the number of first-kind dependent Bernoulli trials until the kth
success. That is,Vk = minn≥k(n : Zn = k).Then the PMF of Vk is given by

P(Vk = n) = p
(

n− 2
k− 2

)
(p+)k−1(q−)n−k + q

(
n− 2
k− 1

)
(p−)k(q+)n−k−1 (1)

Proof. The negative binomial random variable Vk is equivalent to ”stitching” a binomial random variable
Zn in n− 1 Bernoulli trials together with a Bernoulli random variable whose outcome is 1. Thus,

P(Vn = k) + P(Zn−1 = k− 1∧ εn = 1)

Under first-kind dependence, P(εn = 1|ε1 = 1) = p+, and P(εn = 1|ε1 = 0) = p−. So we have two
possibilities: either the kth success occurs after ε1 = 1, or the kth success occurs after ε1 = 0. Thus

P(Vn = k) = P(εn = 1∧ Zn−1 = k− 1∧ ε1 = 1) + P(εn = 1∧ Zn−1 = k− 1∧ ε1 = 0)
= P(εn = 1|Zn−1 = k− 1∧ ε1 = 1)P(Zn−1 = k− 1∧ ε1 = 1)

+ P(εn = 1|Zn−1 = k− 1∧ ε1 = 0)P(Zn−1 = k− 1∧ ε1 = 0)
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Now, from the generalized binomial distribution in [1], P(Zn−1 = k− 1∧ ε1 = 1) = p(n−2
k−2)(p+)k−1(q−)n−k

and P(Zn−1 = k− 1∧ ε1 = 0) = q(n−2
k−1)(p−)k−1(q+)n−k−1. Then

P(Vn = k)p
(

n− 2
k− 2

)
(p+)k−1(q−)n−k + q

(
n− 2
k− 1

)
(p−)k(q+)n−k−1, n = k,k + 1,k + 2, . . .

It will be more helpful to characterize the generalized negative binomial random variable our alter-
native way, by letting Vk = Y + k, where Y is the random variable that counts the number of additional
trials beyond the minimum possible k necessary to achieve the kth success or, equivalently, the number of
failures in a sequence of FK-dependent Bernoulli variables with k successes. The PMF of Y is given in the
following corollary

Corollary 1. Let y be the random variable described here, with support {0,1,2, . . .}. Then Y is equivalent to Vk,
and the PMF of Y is given by

P(Y = y) = p
(

y + k− 2
y

)
(p+)k−1(q−)y + q

(
y + k− 2

y− 1

)
(p−)k(q+)y−1 (2)

When δ = 0, a FK-dependent Bernoulli sequence becomes a standard i.i.d. Bernoulli sequence. Thus,
when δ = 0,Y reverts to a standard negative binomial distribution.

Corollary 2. Let Y be a generalized negative binomial distribution constructed via FK-dependency under the
identity permutation with dependency coefficient δ. When δ = 0, Y is a standard negative binomial random variable.

Proof. When δ = 0, p = p+ = p−, and q = q+ = q−. Thus,

P(Y = y) = p
(

y + k− 2
y

)
(p+)k−1(q−)y + q

(
y + k− 2

y− 1

)
(p−)k(q+)y−1

=

(
y + k− 2

y

)
pkqy +

(
y + k− 2

y− 1

)
pkqy

= pkqy
((

y + k− 2
y

)
+

(
y + k− 2

y− 1

))
= pkqy

(
(y + k− 2)!
y!(k− 2)!

(y + k− 2)!
(y− 1)!(k− 1)!

)
= pkqy

(
(k− 1)(y + k− 2)!

y!(k− 1)!
+

y(y + k− 2)!
y!(k− 1)!

)
= pkqu

(
y + k− 1

y

)
which is indeed the PMF of a standard negative binomial random variable.

2. The Moment Generating Function and various moments

Theorem 2. The moment generating function of the generalized negative binomial distribution is given by

MY(t) =
p(p+)k−1

(1− etq−)k−1 +
q(p−)ket

(1− etq+)k (3)
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Remark: his is indeed a generalization of the standard negative binomial distribution, as it is now a
special case of the generalized negative binomial distribution when δ = 0. To see this, we will show that
the MGF of the generalized negative binomial distribution becomes the MGF for the standard negative
binomial distribution.

When δ = 0, a FK-dependent sequence reverts back to a standard i.i.d. sequence. That is, p+ = p− = p,
and q+ = q− = q. So in this case,

MY(t) =
pk

(1− etq)k−1 +
qpket

(1− etq)k

=
(1− etq)pk + qpket

(1− etq)k

=
pk

(1− etq)k

The proof of Theorem 2 is straightforward from the definition of a moment generating function.

Proof.

MY(t) := E
[
etY
]

=
∞

∑
y=0

ety p
(

y + k− 2
y

)
(p+)k−1(q−)y +

∞

∑
y=0

etyq
(

y + k− 2
y− 1

)
(p−)k(q+)y−1

Now, (y+k−2
y ) = (y+(k−1)−1

y ) = (−1)y(−(k−1)
y ), so the first sum becomes

∞

∑
y=0

ety p
(

y + k− 2
y

)
(p+)k−1(q−)y = p(p+)k−1

∞

∑
y0

(
−(k− 1)

y

)
(−etq−)y

=
p(p+)k−1

(1− etq−)k−1

(4)

For the second sum, note that (k−2
−1 ) = 0. Now, let z = y− 1. Then the second sum is

∞

∑
y=0

etyq
(

y + k− 2
y− 1

)
(p−)k(q+)y−1 = q(p−)ket

∞

∑
z=0

(
z + k− 1

z

)
(etq+)z

= q(p−)ket
∞

∑
z=0

(
−k
z

)
(−etq+)z

=
q(p−)ket

(1− etq+)k

(5)

Combining (4) and (5) yields the result.

We may now derive the various moments of the generalized negative binomial distribution using the
moment generating function.

2.1 Mean of generalized negative binomial distribution
The mean of the generalized negative binomial distribution is given by

µY = E[Y] =
kpq + kδq2 − (k− 1)δpq(1− δ)

p2(1− δ) + δpq(1− δ)
(6)

Remark:Note the reduction of the GNB mean to that of the standard negative binomial distribution
when the sequence is independent. For δ = 0, E[Y] = kq

p .
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2.2 Variance of the generalized negative binomial distribution
After many attempts to distill the formula to a palatable expression, the variance of the generalized
negative binomial distribution is given by

Var[Y] =
kq

(p + qδ)2(1− δ)2 +
δ(p3q + kpq2 − kq3) + δ2(k2 pq + kq− 3kpq2 − 2p3q) + δ3 pq(p2 − k− 2kq)

p2(1− δ2)(p + qδ)2

(7)

Remark: Once again, under independence, Var[Y] = kq
p2 , the variance of the standard negative binomial.

Other higher order moments can also be obtained from the moment generating function and copious
amounts of tedious arithmetic.

3. Other Considerations
3.1 The effect of complete dependence
It’s also worth exploring the other extremes, like complete dependence. As illustrated in [3], complete
dependence under FK-dependence implies that every Bernoulli trial will be identical to the outcome
of the first trial. Thus, if ε1 = 0, the entire sequence will be all 0s, and vice versa if ε1 = 1. What does
that mean for the generalized negative binomial distribution? If ε1 = 0, the sequence will never end; k
successes will never happen. On the other hand, if ε1 = 1, then you are guaranteed to reach k successes in
k trials. This results in both an infinite mean and variance, seen by plugging in δ = 1.

Exploring the PMF under δ = 1, P(Y = 0) = p, because P(ε1 = 1) = p. If ε1 = 1, and δ = 1, then there
will be only 1s in the sequence, and no 0s, and thus P(Y = 0) = P(ε1 = 1). If ε1 = 0, then there are only 0s
in the FK-dependent Bernoulli sequence, and no 1s. Thus, Y can only be ∞, and P(Y = ∞) = P(ε1 = 0) = q.

Remark: When we say Y = ∞, we mean that the sequence of trials has no halting point. That is, the
counting process never ends.

Thus, under complete dependence of the first kind, the support of Y has two points {0,∞}, with
probabilities p and q respectively. This is another way to confirm that Y will have infinite mean and
variance in this case.

3.2 The Negative Binomial Random Variable as a Sum of Geometric Random Variables
The standard negative binomial distribution with k fixed successes can be derived as a sum of independent
standard geometric random variables. One shows this by showing the moment generating function of the
standard negative binomial distribution is equal to the product of k i.i.d. standard geometric random
variables. Moreover, it can also be shown that the standard geometric random variable is a special case of
the standard negative binomial distribution when k = 1.

How much of this carries over to the generalized versions of both distributions? The generalized
geometric distribution was introduced and detailed by Traylor in [2]. Here, we are concerned with the
PMF of “Version 2” of the generalized geometric distribution, as the “shifted” generalized geometric
distribution counts the number of failures prior to the first success, and is analogous to counting the
number of failures in a sequence of trials before the kth success. We reproduce Proposition 2 from [2]

Proposition 2, [2]: Suppose ε = (ε1, ε2, . . . , εn, . . .) is a FK-dependent sequence of Bernoulli random variables.
Let Z = X − 1 be the count of failures prior to the first success. Then Z has a shifted generalized geometric
distribution with PMF

fZ(z) =

{
p, z = 0
q(q+)z−1 p−, z ≥ 1

We can quickly derive its MGF:
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Proposition 1. The moment generating function of the shifted generalized geometric distribution is given by

MZ(t) = p +
etqp−

1− etq+

Proof.

MZ(t) = E
[
etZ
]

= p +
∞

∑
z=1

etzqp−(q+)z−1

= p + etqp−
∞

∑
λ=0

(
etλq+

)λ

= p +
etqp−

1− etq+

3.2.1 Generalized geometric RV as a special case of generalized negative binomial RV
It is true that, for k = 1, the generalized negative binomial distribution under FK-dependence reduces to
the generalized geometric distribution. This is given in the following theorem.

Theorem 3. When k = 1, the generalized negative binomial random variable reduces to a generalized geometric
random variable.

Proof. Simply plug in k = 1 to the PMF of the generalized negative binomial distribution:

P(Y = y) = p
(

y− 1
y

)
(q−)y + q

(
y− 1
y− 1

)
p−(q+)y−1

=

{
p, y = 0
q(q+)y−1 p−, y ≥ 1

because (b
0) = 1 for any b, and we take (b−1

b ) = 0

3.2.2 Sum of independent generalized geometric random variables does not yield a generalized negative
binomial random variable

Unlike the standard case, a sum of i.i.d. generalized geometric random variables does not yield a
generalized negative binomial random variable. First, we note what we mean by a set of i.i.d. general-
ized geometric random variables. Suppose we have a set of generalized geometric random variables
{X1, X2, . . . , Xk}, each with the same p, q, and δ, and all first-kind dependent. Thus, to say that each of
these geometric random variables is mutually independent of the others is to say that nothing about
the other geometric random variables has any probabilistic bearing on the variable in question. That
is, the dependency structure is not changed or altered, and P(Xi|Xj) = P(Xi). i 6= j, i = 1,2, . . . k. The
Bernoulli random variables that make up each geometric random variable still remain FK-dependent
among themselves. That is, if ε i = (ε

(i)
1 , ε

(i)
2 , . . . , ε

(i)
ni ) is the sequence of Bernoulli trials that comprises Xi,

each ε i is FK-dependent among its elements, but independent of the other sequences ε j.
One can easily see that, if the generalized negative binomial distribution were able to be generated by

the sum of i.i.d. generalized geometric random variables, then MY(t) = ∏k
i=1 MXi(t). But
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k

∏
i=1

MXi(t) =
(

p +
etqp−

1− etq+

)
6= p(p+)k−1

(1− etq−)k−1 +
q(p−)ket

(1− etq+)k

= MY(t)

Why is this? The answer is quite intuitive. The generalized negative binomial distribution under
FK-dependence is one sequence under a FK dependency structure. That is, all Bernoulli trials after the first
depend directly on the first. Summing generalized geometric random variables under FK dependence
is equivalent to constructing a sequence of generalized geometric random variables, one after the other.
Since these are themselves comprised of FK-dependent Bernoulli trials, each time a success is observed,
the dependency structure ”starts over” with the next geometric random variable.

For example, suppose the first geometric random variable has a success on the third trial. Then the
fourth Bernoulli trial is starting an entirely new sequence of FK-dependent Bernoulli variables, and does
not depend on the outcome of the first. This is not equivalent to the definition of a generalized negative
binomial distribution.

This property held for the standard versions of the geometric and negative binomial random variables
because every Bernoulli trial in each geometric sequence is i.i.d. Thus, there is no ”transition” from one
geometric random variable to another; it’s as if it was all one big sequence of Bernoulli trials to begin with.
We lose that when we introduce dependency structures.

4. Conclusion
This paper introduced the generalized negative binomial distribution built from a sequence of FK- depen-
dent random variables. The PMF, MGF, and various moments were derived. It was also noted that the
generalized geometric distribution is a special case of the generalized negative binomial distribution, but
one cannot construct a generalized negative binomial random variable from the sum of i.i.d. generalized
geometric random variables.
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