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Abstract
This paper generalizes the notion of the geometric distribution to allow for dependent Bernoulli trials
generated from dependency generators as defined in Traylor and Hathcock’s previous work. The
generalized geometric distribution describes a random variable X that counts the number of dependent
Bernoulli trials until the first success. The main result of the paper is X can count dependent Bernoulli
trials from any dependency structure and retain the same distribution. That is, if X counts Bernoulli trials
with dependency generated by α1 ∈ Cδ, and Y counts Bernoulli trials with dependency generated by
α2 ∈ Cδ, then the distributions of X and Y are the same, namely the generalized geometric distribution.
Other characterizations and properties of the generalized geometric distribution are given, including
the MGF, mean, variance, skew, and entropy.
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Introduction
The standard geometric distribution counts one of two phenomena:

(1) The count of i.i.d. Bernoulli trials until the first success

(2) The count of i.i.d. Bernoulli trials that resulted in a failure prior to the first success

The latter case is simply a shifted version of the former. However, this distribution, in both forms,
has limitations because it requires a sequence of independent and identically distributed Bernoulli trials.
Korzeniowski [2] originally defined what is now known as first-kind (FK) dependent Bernoulli random
variables, and gave a generalized binomial distribution that allowed for dependence among the Bernoulli
trials. Traylor [4] extended the work of Korzeniowski into FK-dependent categorical random variables and
derived a generalized multinomial distribution in a similar fashion. Traylor and Hathcock [5] extended
the notion of dependence among categorical random variables to include other kinds of dependency
besides FK dependence, such as sequential dependence. Their work created a class of vertical dependency
structures generated by a set of functions

Cδ = {α : N≥2→N : α(n) < n and ∀n∃j ∈ {1, ...,n− 1} : α(n) = j},

where the latter property is known as dependency continuity. In this paper, we derive a generalized
geometric distribution from identically distributed but dependent Bernoulli random variables. The main
result is that the pdf for the generalized geometric distribution is the same regardless of the dependency
structure. That is, for any α ∈ Cδ that generates a sequence of identically distributed but dependent
Bernoulli trials, the generalized geometric distribution remains unchanged.

1. Background
The standard geometric distribution is built from a sequence of independent and identically distributed
(i.i.d.) Bernoulli random variables with probability of success p and probability of failure q = 1− p. There
are two ”versions” of the geometric distribution:

(1) A random variable X has a geometric distribution if it counts the number of Bernoulli trials needed
to observe the first success.

(2) A random variable Y = X− 1 has a geometric distribution if it counts the number of failures in a
sequence of Bernoulli trials before the first observed success.

In the first case, X has support {1,2,3, ...}, because we are looking for the first success, which can
occur on trial 1, 2, 3, and so forth. In the latter case, Y has support {0,1,2, ...} because we are counting
the number of failures before the first success occurs. That is, if the first success occurs on Trial 1, then
there were 0 failures preceding the first success. If the first success occurs on trial 2, then one failure
occurred prior to the first success, and thus Y = 1. Essentially, Version 2 is a shifted Version 1, because our
perspective changes– we do not include the success in the count in Version 2.

For Version 1, the pdf is given by

fX(k) = qk−1 p, k = 1,2,3, . . . (1)

For Version 2, (the shifted generalized geometric distribution)the pdf is given by

fY(k) = qk p, k = 0,1,2, . . . (2)

The next section derives the generalized geometric distribution for FK-dependent random variables,
and then shows that the pdf is the same regardless of dependency structure.
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2. Generalized Geometric Distribution

Derivation from FK-Dependent Bernoulli Random Variables
Suppose we have a sequence of FK-dependent Bernoulli Random variables. Recall from [2] and [4] that
FK-dependent random variables are weighted toward the outcome of the first variable ε1. That is, in the
Bernoulli case, P(ε1 = 1) = p and P(ε1 = 0) = q = 1− p. For subsequent variables in the sequence,

P(εn = 1|ε1 = 1) = p+P(εn = 1|ε1 = 0) = p−

P(εn = 0|ε1 = 1) = q−P(εn = 0|ε1 = 0) = q+

for n ≥ 2, where q = 1− p, p+ = p + δq, p− = p− δp, q− = q− δq, q+ = q + δp, and 0 ≤ δ ≤ 1 is the
dependency coefficient.

We will first give the generalized ”Version 1” of the geometric distribution for FK-dependent random
variables.

Proposition 1. Suppose ε = (ε1, ε2, . . . , εn, . . .) is a FK-dependent sequence of Bernoulli random variables. Let X be
the count of such Bernoulli variables needed until the first success. Then X has a generalized geometric distribution
with pdf

fX(k) =

{
p, k = 1
q (q+)k−2 p−, k ≥ 2

(3)

Proof. The probability of the first success occurring on the first trial is the probability that ε1 = 1, so

P(X = 1) = P(ε1) = 1 = p.

The probability of the first success occurring on the second trial is the probability of the following sequence
ε = (0,1), and thus P(X = 2) = P(ε = (0,1)) = qp−. In general, for k ≥ 2,

P(X = k) = P(ε = (0,0, ...,0,1))

with k− 1 failures (or 0s). Since the variables are FK-dependent, the probability of failure after the first
failure is q+, and the probability of success given that ε1 = 0 is p− regardless of where in the sequence
that success occurs. Therefore, P(ε = (0,0, . . . ,0,1) = q (q+)k−2 p−.

In a similar fashion, suppose we prefer to count the number of failures before the first success occurs.
For this generalized ”Version 2”, we have the following proposition.

Proposition 2. Suppose ε = (ε1, ε2, . . . , εn, . . .) is a FK-dependent sequence of Bernoulli random variables. Let
Y = X− 1 be the count of failures prior to the first success. Then Y has a shifted generalized geometric distribution
with pdf

fY(k) =

{
p, k = 0
q (q+)k−1 p−, k ≥ 1

(4)

Proof. The proof follows in an identical fashion to the proof of Proposition 1
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Generalized Geometric Distribution for any Vertical Dependency Structure
Propositions 1 and 2 were derived for FK-dependent random variables, but in fact these random
variables X and Y remain distributed according to the generalized geometric distribution and the shifted
generalized geometric distribution regardless of the vertical dependency structure specified, as long as
the dependency structure was generated from a function in Cδ.

Theorem 1. Let ε = (ε1, ε2, . . . , εn, . . .) be a vertically dependent sequence of Bernoulli random variables, where the
dependency is generated by α ∈ Cδ. Let X be the count of such Bernoulli trials needed until the first success, and
let Y = X− 1 be the count of failures of such Bernoulli trials prior to the first success. Then the pdf of X and Y is
identical to those given in Propositions 1 and 2.

Proof. Let α ∈ Cδ generate the vertically dependent Bernoulli sequence ε. Then P(X = 1) = P(Y = 0) =
P(ε1 = 1) = p. For k ≥ 2, P(X = 1) = P(ε = (0,0, . . . ,0,1)), where there are k − 1 0s prior to the first
1. Then P(εk = 1) = p−, because α(k) ∈ {1, ...,k − 1}, and ε i = 0 for all i ≤ k. P(ε1 = 0) = q for k ≥ 2.
Then, for 2 ≤ i ≤ k − 1, α(i) = j ∈ {1, ..., i − 1}, and ε j = 0∀j = 1, ..., i − 1 and ∀i = 1, ...,k − 1. Thus
P(ε i = 0|εα(i) = 0) = q+ for all i = 2, . . . ,k− 1, and therefore P(X = k) = q (q+)k−2 p−. A similar argument
follows for P(Y = k),k ≥ 1.

This result is quite powerful, and not one that holds for all generalized distributions constructed from
dependent random variables. Given any vertical dependency structure generated from the broad class Cδ,
the count of trials before a success and the count of failures before a success have the same probability
distribution. Thus, if this information is desired, no information about the dependency structure other
than the membership of its generating function in Cδ is necessary. The only information needed to
calculate the generalized geometric probabilities for dependent Bernoulli trials is p and δ.

The next section gives some basic properties of the Generalized Geometric Distribution, such as the
moment generating function and selected moments.

3. Properties of the Generalized Geometric Distribution

3.1 Moment Generating Function
Fact 1. The moment generating function of the generalized geometric distribution is

MX(t) = pet +
qp−e2t

1− q+et (5)

Derivation. MX(t) = E
[
etX] by definition, so

MX(t) = pet +
∞

∑
k=2

q
(
q+
)k−2 p−ekt

= pet +
qp−e2t

1− q+et

Using the moment generating function, we can give moments of the generalized geometric distribu-
tion.

3.2 Mean
Fact 2. The mean of the generalized geometric distribution is

E[X] = µ =
1− δp

p(1− δ)



A Generalized Geometric Distribution from Vertically Dependent Bernoulli Random Variables — 5/11

Derivation. Taking the first derivative of (5) and evaluating at t = 0 yields the mean after arithmetic
simplification. See Section 5 for full derivation.

The effect of dependence can be seen in the plot of E[X] below in Figure 1. For fixed p, when δ→ 1,
E[X]→∞, though the rate changes with p.

Figure 1. Expectation of the Generalized Geometric Distribution

To explore further, suppose p = 1/2, and the Bernoulli trials are thus balanced between success and
failure. Figure 2 shows the effect of delta for a fixed p. Notice that the effect of δ on the expected value
become more pronounced as δ→ 1. In particular, for δ = 1/2 and p = 1/2, E[X] = 3, but after this point,
an increase of only 1/6 in δ to δ = 2/3 increased the expected value to 4 trials before a success. To double
the expected number of trials before a success again to E[X] = 8 requires an increase of δ by only 4/21 to
6/7.

A smaller probability of success p will yield an expected value µ that is much more susceptible to
effects of dependency δ, and a larger p will yield an expected value more resistant to high dependency δ.
Since the geometric distribution is a count of the number of trials needed to obtain the first success, a
higher p increases the probability that the first success occurs on the first trial, while a lower p decreases
that probability. Therefore, the dependency δ would have a higher effect for lower p, because a longer
(dependent) sequence is expected to be generated prior to the first success, which increases the expected
number of trials faster than if the Bernoulli trials were independent.
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Figure 2. Expected value of generalized geometric distribution with fixed p = 1/2.

Remark. Notice that when δ = 0, the Bernoulli trials are independent. The mean of the generalized geometric
distribution when δ = 0 is E[X] = 1

p , the mean of the standard geometric distribution.

3.3 Variance
Fact 3. The variance of the generalized geometric distribution is

Var(X) = σ2 =
1− p + δp(1− p)

p2(1− δ)2

Derivation. See Section5.
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Figure 3. Effect of δ on Var[X] for various values of fixed p.

Figure 3 shows the effect of δ on the variance for different values of p. As with the mean, a smaller p
induces a higher effect of δ on the variance of the number of dependent Bernoulli trials before the first
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success is observed. The shape of all 4 cases is similar, but the scales are vastly different. As p increases,
the scale of the variance decreases dramatically.

Remark. Again, note that when δ = 0, the variance of the generalized geometric distribution reduces to that of
the standard geometric distribution.

3.4 Skew
Fact 4. The skew of the generalized geometric distribution is given by

Skew[X] =
2− 3p + p2 + δp[q + δpq + p(2δ− 1− p)]

(q + δpq)3/2

Derivation. See Section 5.

Figure 4. Skew of Generalized Geometric Distribution as a function of p for δ = 0 and δ = 1.

The skew of the generalized geometric distribution gets more complicated in its behavior as a function
of both p and δ. Figure 4 shows the skew as a function of p for the two extreme cases: complete
independence (δ = 0) and complete dependence δ = 1. From p = 0 to p ≈ 0.658, the skew for the
independent geometric distribution is greater than the completely dependent case. For p ' 0.658, the
skew is greater under complete dependence.

3.5 Entropy
The entropy of a random variable measures the average information contained in the random variable.
It can also be viewed as a measure of how unpredictable or ”truly random” the variable is [1] . The
definition of entropy, denoted H(X), was coined by Claude Shannon [3] in 1948.

Definition 1 (Entropy). H(X) := −∑i P(xi) log2(P(xi))

For the standard geometric distribution, the entropy is given by

Hsg(X) =
−(1− p) log2(1− p)− p log2(p)

p

Fact 5. The entropy for the generalized geometric distribution is

Hgg(X) =
− [pp− log2(p) + qp− log2(qp−) + qq+ log2(q

+)]

p−
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Derivation. See Section 5.

(a) Entropy of the generalized geometric distribution as a
function of p for selected values of δ.

(b) Entropy of the generalized geometric distribution as a
function of δ for selected values of p

Figure 5. Entropy from two different perspectives: fixed δ and fixed p

Figure 5a shows Hgg(X) as a function of p for fixed values of δ. Notice that while the entropy decreases
to 0 for all curves as p→ 1, the entropy curve is shifted upward for larger δ. Figure 5b fixes p and looks
at entropy as a function of δ. Notice that for smaller p, the entropy is much higher, which aligns with
intuition.

4. Conclusion
The standard geometric distribution counts the number of independent Bernoulli trials until the first
success. This paper uses the works of Koreniowski, and Traylor and Hathcock [2, 4, 5] on dependent
Bernoulli and categorical random variables to develop a generalized geometric distribution built from
dependent Bernoulli random variables. The main result of the paper is that the pdf for the generalized
geometric distribution is independent of the dependency structure of the Bernoulli random variables that
comprise it. That is, regardless of dependency structure, the pdf for the generalized geometric distribution
is given by Proposition 1. Various properties and characterizations were given, including the moment
generating function, mean, variance, skew, and entropy. The effect of dependency on each property was
studied.
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5. Appendix

5.1 Derivation of the mean

E[X] :=
∞

∑
k=1

kP(k)

= p +
∞

∑
k=2

k
(

q(q+)k−2 p−
)

= p +
qp−(2− q+)

(p−)2

=
pp− + q(2− q+)

p−

=
pp− + q(1 + 1− q+)

p−

=
pp− + q(1 + p−)

p−

=
pp− + (1− p)(1 + p−)

p−

=
1− p + p−

p−

=
1− δp

p(1− δ)

5.2 Derivation of the variance
Var[X] = E[X2]− E[X]2, and thus we must first obtain E[X2].

E[X2] :=
∞

∑
k=1

k2P(k)

= p +
∞

∑
k=2

k2
(

q(q+)k−2 p−
)

= p +
qp−(4− 3q+ + (q+)2))

(p−)3

= p +
q(4− 3q+ + (q+)2)

(p−)2

=
p(p−)2 + q(q+)2 + 4q− 3qq+

(p−)2

We will simplify the numerator. First,

p(p−)2 + q(q+)2 = p3 + q3 − 2p3δ + 2p2δq + p3δ2 + p2δ2q

= 1− 3p + 3p2 + 2p(q2δ− p2δ) + δ2 p2(p + q)

= 1− 3p + 3p2 + 2pδ(1− 2p) + δ2 p2

Then

4q− 3qq+ = 4(1− p)− 3(1− 2p + p2 + δp− δp2)

= 1 + 2p− 3p2 − 3pδ + 3δp2
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Combining the two, the numerator is given by

p(p−)2 + q(q+)2 + 4q− 3qq+ = 1− 3p + 3p2 + 2pδ(1− 2p) + δ2 p2 + 1 + 2p− 3p2 − 3pδ + 3δp2

= 2− p− δp(1− δp + p)

Thus E[X2] = 2−p−δp(1−δp+p)
p2(1−δ)2

Finally,

Var[X] =
2− p− δp(1− δp + p)

p2(1− δ)2 −
(

1− δp
p(1− δ)

)2

=
2− p− δp(1− δp + p)− [1− 2δp + δ2 p2]

p2(1− δ)2

=
1− p + δpq
p2(1− δ)2

5.3 Derivation of Skew
The skew of a random variable is given by

Skew[X] := E

[(
X− µ

σ

)3
]
=

E[X3]− 3µVar[X]− µ3

(Var[X])3/2

First, we derive E[X3].

E[X3] =
∞

∑
k=1

k3P(k)

= p +
∞

∑
k=2

k3q(q+)k−2 p−

=
6− 6p + p2(1− δ)2 = p3δ(1− δ)2

p3(1− δ)3

Then

Skew[X] =

6−6p+p2(1−δ)2−p3δ(1−δ)2

p3(1−δ)3 − 3
(

1−δp
p(1−δ)

)(
1−p+δp(1−p)

p2(1−δ)2

)
−
(

1−δp
p(1−δ)

)3

(
1−p+δp(1−p)

p2(1−δ)2

)3/2

=
6− 6p + p2(1− δ)2 − p3δ(1− δ)2 − 3(1− δp)(1− p + δp(1− p))− (1− δp)3

(1− p + δp(1− p))3/2

Now, the numerator is expanded to

6− 6p+p2(1− 2δ + δ2)− p3δ(1− 2δ + δ2)− 3(1− δp)((1− p) + δp(1− p)) + (1− δp + δ2 p2 − δ3 p3)

= 6− 6p + p2 − 2δp3 − p3δ + 2δ2 p3 − 3[(1− p)(1− δ2 p2)]− 1 + δp

= 2− 3p + p2 − 2δp2 − p3δ− δ2 p3 + 3δ2 p2 + δp

= 2− 3p + p2 + δp(q + δpq + p(2δ− 1− p))

And thus the skew is as given in Fact 3.
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5.4 Derivation of Entropy
Entropy is defined as H(X) := ∑∞

i=1 P(xi) log2(P(xi)). For the generalized geometric distribution,

H(X) = −
(

p log2(p) +
∞

∑
i=2

qp−(q+)i−2 log2(qp−(q+)i−2))

)

= −
(

p log2(p) + qp− log2(qp−)
∞

∑
i=2

(q+)i−2 + qp− log2(q
+)

∞

∑
i=2

(i− 2)(q+)i−2

)

Simplifying the above yields the result.
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