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Abstract
Categorical random variables are a common staple in machine learning methods and other applications
across disciplines. Many times, correlation within categorical predictors exists, and has been noted to
have an effect on various algorithm effectiveness, such as feature ranking and random forests. We
present a mathematical construction of a sequence of identically distributed but dependent categorical
random variables, and give a generalized multinomial distribution to model the probability of counts of
such variables.
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Introduction
Bernoulli random variables are invaluable in statistical analysis of phenomena having binary outcomes,
however, many other variables cannot be modeled by only two categories. Many topics in statistics and
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Figure 1. First-Dependence Tree Structure

machine learning rely on categorical random variables, such as random forests and various clustering
algorithms. [6, 7]. Many datasets exhibit correlation or dependency among predictors as well as within
predictors, which can impact the model used. [6, 9]. This can result in unreliable feature ranking [9], and
inaccurate random forests [6].

Some attempts to remedy these effects involve Bayesian modeling [2] and various computational and
simulation methods [8]. In particular, simulation of correlated categorical variables has been discussed in
the literature for some time. [1, 3, 5]. Little research has been done to create mathematical framework of
correlated or dependent categorical variables and the resulting distributions of functions of such variables.

Korzeniowski [4] studied dependent Bernoulli variables, formalizing the notion of identically dis-
tributed but dependent Bernoulli variables and deriving the distribution of the sum of such dependent
variables, yielding a Generalized Binomial Distribution.

In this paper, we generalize the work of Korzeniowski [4] and formalize the notion of a sequence
of identically distributed but dependent categorical random variables. We then derive a Generalized
Multinomial Distribution for such variables and provide some properties of said distribution. We also
give an algorithm to generate a sequence of correlated categorical random variables.

1. Background

Korzeniowski defined the notion of dependence in a way we will refer to here as dependence of the first
kind (FK dependence). Suppose (ε1, ..., εN) is a sequence of Bernoulli random variables, and P(ε1 = 1) = p.
Then, for ε i, i ≥ 2, we weight the probability of each binary outcome toward the outcome of ε1, adjusting
the probabilities of the remaining outcomes accordingly.

Formally, let 0≤ δ ≤ 1, and q = 1− p. Then define the following quantities

p+ := P(ε i = 1|ε1 = 1) = p + δq p− := P(ε i = 0|ε1 = 1) = q− δq
q+ := P(ε i = 1|ε1 = 0) = p− δp q− := P(ε i = 0|ε1 = 0) = q + δp

(1)

Given the outcome i of ε1, the probability of outcome i occurring in the subsequent Bernoulli variables
ε2, ε3, ...εn is p+, i = 1 or q+, i = 0. The probability of the opposite outcome is then decreased to q− and p−,
respectively.

Figure 1 illustrates the possible outcomes of a sequence of such dependent Bernoulli variables.
Korzeniowski showed that, despite this conditional dependency, P(ε i = 1) = p ∀ i. That is, the sequence
of Bernoulli variables is identically distributed, with correlation shown to be

Cor(ε i, ε j) =

{
δ, i = 1
δ2, i 6= j, i, j ≥ 2
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These identically distributed but correlated Bernoulli random variables yield a Generalized Binomial
distribution with a similar form to the standard binomial distribution. In our generalization, we use
the same form of FK dependence, but for categorical random variables. We will construct a sequence
of identically distributed but dependent categorical variables from which we will build a generalized
multinomial distribution. When the number of categories K = 2, the distribution reverts back to the
generalized binomial distribution of Korzeniowski [4]. When the sequence is fully independent, the
distribution reverts back to the independent categorical model and the standard multinomial distribution,
and when the sequence is independent and K = 2, we recover the standard binomial distribution. Thus,
this new distribution represents a much larger generalization than prior models.

2. Construction of Dependent Categorical Variables
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Figure 2. Probability distribution at N = 3 for K = 3

Suppose each categorical variable has K possible categories, so the sample space S = {1, ...,K}1 The
construction of the correlated categorical variables is based on a probability mass distribution over
K−adic partitions of [0,1]. We will follow graph terminology in our construction, as this lends a visual
representation of the construction. We begin with a parent node and build a K-nary tree, where the
end nodes are labeled by the repeating sequence (1, ...,K). Thus, after N steps, the graph has KN nodes,
with each node labeled 1, ...,K repeating in the natural order and assigned injectively to the intervals(

0, 1
KN

]
,
( 1

Kn , 2
KN

]
, ...,
(

KN−1
Kn ,1

]
. Define

εN = i on
(

Kj
KN , Kj+i

KN

]

εN = K on
(

K(j+1)−1
KN , K(j+1)

KN

] (2)

where i = 1, ...,K− 1, and j = 0,1, ...,KN−1 − 1. An alternate expression for (2) is

εN = i on
(

l−1
KN , l

KN

]
, i ≡ l mod K, i = 1, ...,K− 1

εN = K on
(

l−1
KN , l

KN

]
, 0≡ l mod K

(3)

1These integers should not be taken as ordered or sequential, but rather as character titles of categories.
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To each of the branches of the tree, and by transitivity to each of the KN partitions of [0,1], we assign a
probability mass to each node such that the total mass is 1 at each level of the tree in a similar manner
to [4].

Let 0 < pi < 1, i = 1, ...,K such that ∑K
i=1 pi = 1, and let 0≤ δ ≤ 1 be the dependency coefficient. Define

p+i := pi + δ ∑l 6=i pl , p−i = pi − δpi
for i = 1, ...,K. These probabilities satisfy two important criteria:

Lemma 1.

• ∑K
i=1 pi = p+i + ∑l 6=i p−l = 1

• pi p+i + p−i ∑l 6=i pl = pi

Proof. The first is obvious from the definitions of p+/−
i above. The second statement follows clearly from

algebraic manipulation of the definitions: pi p+i + p−i ∑l 6=i pl = p2
i + pi(1− pi) = pi

We now give the construction in steps down each level of the K-nary tree.

LEVEL 1:
Parent node has mass 1, with mass split 1 ·∏K

i=1 p[ε1=i]
i , where [·] is an Iverson bracket. This level corre-

sponds to a sequence ε of dependent categorical variables of length 1.

ε1/Branch Path Mass at Node Interval
1 parent→ 1 p1 (0,1/K]
2 parent→ 2 p2 (1/K,2/K]
...

...
...

...
i parent→ i pi ((i− 1)/K, i/K]
...

...
...

...
K parent→ K Mass pK ((K− 1)/K,1]
Table 1. Probability mass distribution at Level 1

LEVEL 2:
Level 2 has K nodes, with K branches stemming from each node. This corresponds to a sequence of length
2: ε = (ε1, ε2). Denote i.1 as node i from level 1. For i = 1, ...,K,

Node i.1 has mass pi, with mass split pi
(

p+i
)[ε2=i] K

∏
j=1,j 6=i

(
p−j
)[ε2=j]

ε2/Branch Path Mass at Node Interval

1 i.1→ 1 pi p−1
(
(i−1)K

K2 , (i−1)K+1
K2

]

2 i.1→ 2 pi p−2
(
(i−1)K+1

K2 , (i−1)K+2
K2

]

...
...

...
...

i i.1→ i pi p+i
(
(i−1)K+(i−1)

K2 , (i−1)K+i
K2

]

...
...

...
...

K i.1→ K pi p−K
( iK−1

K2 , iK
K2

]

Table 2. Probability mass distribution at Level II, Node i
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In this fashion, we distribute the total mass 1 across level 2. In general, at any level r, there are K
streams of probability flow at Level r. For ε1 = i, the probability flow is given by

pi

r

∏
j=2

[
(

p+i
)[ε j=i]∏

l 6=i

(
p−l
)[ε j=l]

]
, i = 1, ...,K (4)

We use this flow to assign mass to the Kr intervals of [0,1] at level r in the same way as above. We may
also verify via algebraic manipulation that

pi = pi

(
p+i + ∑

l 6=i
p−i

)r−1

= pi ∑
ε2,...,εr

r

∏
j=2

[
(

p+i
)[ε j=i]∏

l 6=i

(
p−l
)[ε j=l]

]
(5)

where the first equality is due to the first statement of Lemma 1, and the second is due to (4).

2.1 Example construction
For an illustration, refer to Figure 2. In this example, we construct a sequence of length N = 3 of
categorical variables with K = 3 categories. At each level r, there are 3r nodes corresponding to 3r

partitions of the interval [0,1]. Note that each time the node splits into 3 children, the sum of the split
probabilities is 1. Despite the outcome of the previous random variable, the next one always has three
possibilities. The sample space of categorical variable sequences of length 3 has 33 = 27 possibilities. Some
example sequences are (1,3,2) with probability p1 p−3 p−2 , (2,1,2) with probability p2 p−1 p+2 , and (3,1,1)
with probability p3 p−1 p−1 . These probabilities can be determined by tracing down the tree in Figure 2.

2.2 Properties
2.2.1 Identically Distributed but Dependent
We now show the most important property of this class of sequences– that they remain identically
distributed despite losing independence.

Lemma 2. P(εr = i) = pi; i = 1, ...,K,r ∈N.

Proof. The proof proceeds via induction. r = 1 is clear by definition, so we illustrate an additional base
case. For r = 2, from Lemma 1, and for i = 1, ...,K,

P(ε2 = i) = P




K2−1⋃

j=1

(
Kj
K2 ,

Kj + 1
K2

]
 = pi p+i + p−i ∑

j 6=i
pj = pi

Then at level r, in keeping with the alternative expression (3), we express εr in terms of the specific
nodes at level r:

εr =
Kr

∑
l=1

εl
r1
(

l−1
Kr , l

Kr

], where εl
r =

{
l mod K, 0 6≡ l mod K
K, 0≡ l mod K

(6)

Let ml
r be the probability mass for εl

r. Then, for l = 1, ...,Kr and i = 1, ...,K− 1,

ml
r =

{
P(εl

r = i), i ≡ l mod K
P(εr = K), 0≡ l mod K

(7)
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As the inductive hypothesis, assume that for i = 1, ...,K− 1,

pi = P(εr−1 = i) = P




Kr−1⋃

l=1
i≡l mod K

{εl
r−1 = i}


 =

Kr−1

∑
l=1

i≡l mod K

P
(

εl
r−1 = i

)
=

Kr−1

∑
l=1

i≡l mod K

ml
r−1

Each mass ml
r−1 is split into K pieces in the following way

ml
r−1 =





ml
r−1

(
p+1 + ∑K

j=2 p−i
)

, l = 1, ...,K

ml
r−1

(
p+2 + ∑j 6=2 p−i

)
, l = K + 1, ...,2K

ml
r−1

(
p+3 + ∑j 6=3 p−i

)
, l = 2K + 1, ...,3K

...

ml
r−1

(
p+K + ∑j 6=K p−i

)
, l = Kr−1 − K + 1, ...,Kr−1

(8)

which may be written as

ml
r−1 =





P(εr = 1) + P(εl
r 6= 1) = ml

r + P(εl
r 6= 1), l = 1, ...,K

P(εr = 1) + P(εl
r 6= 1) = ml

r + P(εl
r 6= 1), l = K + 1, ...,2K

P(εr = 1) + P(εl
r 6= 1) = ml

r + P(εl
r 6= 1), l = 2K + 1, ...,3K

...
P(εr = 1) + P(εl

r 6= 1) = ml
r + P(εl

r 6= 1), l = Kr−1 − K + 1, ...,Kr−1

(9)

Then

P(εr = 1) =
Kr

∑
ξ=1

1≡ξ mod K

mξ
r =

K

∑
l=1

ml
r−1 p+1 +

Kr−1

∑
l=K+1

ml
r−1 p−1 (10)

When 1≡ l mod K,

p+1

(
K−1

∑
ξ=0

ml+ξ
r−1

)
= ml

r−1 p+1 + ml
r−1

(
K

∑
j=2

p−j

)
= ml

r−1 (11)

Equation 11 holds because ml+ξ
r−1 =

p−l+ξ

p+1
, ξ = 0, ...,K− 1, and by of Lemma 1. Thus,

P(εr = 1) =
Kr

∑
ξ=1

1≡ξ mod K

mξ
r =

K

∑
l=1

ml
r−1 p+1 +

Kr−1

∑
l=K+1

ml
r−1 p−1 =

K

∑
l=1

1≡l mod K

ml
r−1 +

Kr−1

∑
l=K+1

ml
r−1 =

Kr−1

∑
l=1

ml
r−1 = p1

(12)

A similar procedure for i = 2, ...,K follows and the proof is complete.

2.2.2 Pairwise Cross-Covariance Matrix
We now give the pairwise cross-covariance matrix for dependent categorical random variables.
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Theorem 1 (Cross-Covariance of Dependent Categorical Random Variables). Denote Λι,τ be the K × K
cross-covariance matrix of ε ι and ετ, ι,τ = 1, ...,n, defined as Λι,τ = E[(ε ι − E[ε ι])(ετ − E[ετ])]. Then the entries

of the matrix are given by Λ1,τ
ij =

{
δpi(1− pi), i = j
−δpi pj, i 6= j

, τ ≥ 2, and Λι,τ
ij =

{
δ2 pi(1− pi), i = j
−δ2 pi pj, i 6= j

, τ > ι, ι 6= 1.

Proof. The ijth entry of Λι,τ is given by

Cov([ε ι = i], [ετ = j]) =E[[ε ι = i][ετ = j]]−E[[ε ι = i]]E[[ετ = j]] = P(ε ι = i, ετ = j)− P(ε ι = i)P(ετ = j) (13)

Let ι = 1. For j = i, and τ = 2,

Cov([ε1 = i], [ε2 = i]) = P(ε1 = i, ε2 = i)− p2
i = pi p+i − p2

i = δpi(1− pi) (14)

For j 6= i and τ = 2,

Cov([ε1 = i], [ε2 = j]) = P(ε1 = i, ε2 = j)− pi pj = pi p−j − pi pj = −δpi pj (15)

For τ 6= 2, it suffices to show that P(ε1 = i, ετ = j) =

{
pi p+i , j = i
pi p−j , j 6= i

.

Starting from ε1, the tree is split into K large branches governed by the results of ε1. Then at level r,
there are Kr nodes indexed by l. Each of the K large branches contains Kr−1 of these nodes. That is,

ε1 = 1 branch contains nodes l = 1, ...,Kr−1

ε1 = 2 branch contains nodes l = Kr−1 + 1, ...,2Kr−1

...
ε1 = K branch contains nodes l = Kr − K + 1, ...,Kr

Then P(ε1 = 1, εl
r = i) = ml

r; i ≡ l mod K, l = 1, ..., Kr−1. We have already shown the base case for r = 2.
So, as an inductive hypothesis, assume

P(ε1 = 1, εr−1 = i) =

{
p1 p+1 , i = 1
p1 p−i , i 6= 1

Then we have that for i = 1,

p1 p+1 = P(ε1 = 1, εr−1 = 1) =
Kr−2

∑
l=1

1≡l mod K

ml
r−1

and for i 6= 1,

p1 p−i = P(ε1 = 1, εr−1 = i) =
Kr−2

∑
l=1

i≡l mod K

ml
r−1

Moving one step down the tree (still noting that ε1 = 1), we have seen that the each mass ml
r−1 splits as

ml
r−1 = p+1 ml

r−1 + ml
r−1

K

∑
j=2

p−j = P(ε1 = 1, εr = 1) + ml
r−1

K

∑
j=2

p−j
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Therefore,

P(ε1 = 1, εr = 1) =
Kr−1

∑
l=1

1≡l mod K

ml
r

=
Kr−2

∑
l=1

1≡l mod K

ml
r−1 p+1 +

K

∑
j=2

Kr−2

∑
l=1

1 6≡l mod K

ml
r−1 p−j

= p1 p+1 p+1 + p1 p+1
K

∑
j=2

p−j

= p1 p+1

A similar strategy shows that P(ε1 = 1, εr = i) = p1 p−i and that P(ε1 = i, εr = j) =

{
pi p+i , j = i
pi p−j , j 6= i

.

Next, we will compute the ijth entry of Λι,τ, ι > 1,τ > ι. For ι = 2,τ = 3,

P(ε2 = i, ε3 = j) =





pi
(

p+i
)2

+ (p−i )
2 ∑j 6=i pj, i = j

pi p+i p−j + pj p−i p+j + ∑l 6=i
l 6=j

pl p−i p−j , i 6= j (16)

This can be seen by tracing the tree construction from level 2 to level 3, with an example given in
Figure 2. Next, we will show that (16) holds for τ > 3.

First, note that P(ε2 = 1, εl
τ = 1) = ml

τ for 1 ≡ l mod K, and l = (ξ − 1)Lτ−1 + j, where ξ = 1, ...,K,
j = 1, ...,Kτ−2. We have shown the base case where τ = 3. For the inductive hypothesis, assume that

P(ε2 = 1, ετ−1 = 1) = p1
(

p+1
)2

+ (p−1 )
2

K

∑
j=2

p−j

Then we have that
(

p−1
)2

∑K
j=2 p−j = ∑1≡l mod K ml

τ−1 for the l defined above. Then, at each ml
τ−1, we have

the following mass splits:

ml
τ−1 = ml

τ−1 p+1 + ml
τ−1

K

∑
j=2

p−j , ξ = 1

ml
τ−1 = ml

τ−1 p+i + ml
τ−1 ∑

j 6=i
ml

τ−1 p−j , ξ = i, i = 2, ...,K
(17)

Then

P(ε2 = 1, ετ = 1) =
K

∑
ξ=1

∑
l,ξ

1≡l mod K

ml
τ (18)

Using the same tactic as (11), we see that using (17), adding the components, and combining the terms
correctly, the proof is complete for any τ. The proof for P(ε2 = i, ετ = j) for any i, j follows similarly, and
the proof for P(ε ι = i, ετ = j) follows from reducing to the above proven claims.

In the next section, we exploit the desirable identical distribution of the categorical sequence in order
to provide a generalized multinomial distribution for the counts in each category.
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3. Generalized Multinomial Distribution
From the construction in Section 2, we derive a generalized multinomial distribution in which all categor-
ical variables are identically distributed but no longer independent.

Theorem 2 (Generalized Multinomial Distribution). Let ε1, ..., εN be categorical random variables with cat-
egories 1, ...,K, constructed as in Section 2. Let Xi = ∑N

j=1[ε j = i], i = 1, ...,K, where [·] is the Iverson bracket.
Denote X = (X1, ..., XK), with observed values x = (x1, ..., xK). Then

P(X = x) =
K

∑
i=1

pi
(N − 1)!

(xi − 1)! ∏j 6=i xj!
(

p+i
)xi−1 ∏

j 6=i

(
p−j
)xj

Proof. For brevity, let ε(−1) = (ε2, ..., εn) denote the sequence of n categorical random variables with the
first variable removed. Conditioning on ε1,

P(X = x) =
K

∑
i=1

P(X = x|ε1 = i)

=
K

∑
i=1

pi ∑
ε−(1)
X=x

N

∏
j=1

(
p+i
)[ε j=i]

K

∏
k=1
k 6=i

N

∏
l=1

(
p−l
)[ε l=k]

=
K

∑
i=1

pi


 ∑

ε2,...,εN
X=x

(
p+i
)∑N

j=1[ε j=i]∏
l 6=i

(
p−l
)∑N

j=1[ε j=l]




Now, when ε1 = 1, there are (N−1
x1−1) combinations of the remaining N − 1 categorical variables {ε i}N

i=2

to reside in category 1, (N−1−x1−1
x2

) ways the remaining N − 1− x1 − 1 categorical variables can reside

in category 2, and so forth. Finally, there are (N−1−x1−1∑K−1
i=2 xi

xK
) ways the final unallocated {ε i} can be in

category K. Thus,

P (X = x|ε1 = 1)

= p1

(
N − 1
x1 − 1

)(
N − 1− x1 − 1

x2

)
· · ·
(

N − 1− x1 − 1−∑K−1
j=2 xj

xK

)(
p+1
)x1−1

K

∏
j=2

(
p−j
)xj

= p1
(N − 1)!

(x1 − 1)! ∏K
j=2 xj!

(
p+1
)x1−1

K

∏
j=2

(
p−j
)xj

(19)

Similarly, for i = 2, ...,K

P (X = x|ε1 = i)

= pi

(
N − 1

x1

)
· · ·
(

N − 1−∑i−1
j=1

xi

)
· · ·
(

N − 1− xi − 1−∑K−1
j 6=i,j=1 xj

xK

)(
p+1
)x1−1

K

∏
j=2

(
p−j
)xj

= pi
(N − 1)!

(xi − 1)! ∏j 6=i xj!
(

p+i
)xi−1 ∏

j 6=i

(
p−j
)xj

(20)

Summing completes the proof.
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4. Properties

This section details some useful properties of the Generalized Multinomial Distribution and the dependent
categorical random variables.

4.1 Marginal Distributions
Theorem 3 (Univariate Marginal Distribution). The univariate marginal distribution of the Generalized
Multinomial Distribution is the Generalized Binomial Distribution. That is,

P(Xi = xi) = q
(

N − 1
xi

)(
p−i
)xi
(
q−
)N−1−xi + pi

(
N − 1
xi − 1

)(
p+i
)xi−1 (q+

)N−1−(xi−1) (21)

where q = ∑j 6=i pj, q+ = q + δpi, and q− = q− δq

Proof. First, we claim the following: q+ = q + δpi = p+l + ∑j 6=l
j 6=i

p−j , l = 2, ...,K. This may be justified via a

simple manipulation of definitions:

p+l + ∑
j 6=l

p−j = pl + δ∑
j 6=l

(pj − δpj) + ∑
j 6=l
j 6=i

(pj − δpj) = pl + ∑
j 6=l
j 6=i

pj + δpi = q + δpi

Similarly, q− = q− δq. Thus, we may collapse the number of categories to 2: Category i, and everything

else. Now, notice that for l 6= i,
(

p+l
)xl−1

∏
j 6=l
j≤i

(
p−j
)xj

= (q+)N−xi−1 for l = 1, ...,K and l 6= i. Fix k 6= i. Then

pk
(N − 1)!

(xk − 1)! ∏j 6=k xj!
(pk)

xk−1 ∏
j 6=k

(
p−j
)xj

= pk
(

p−i
)xi
(
q+
)N−xi−1 (N − 1)!

xi!(xk − 1)! ∏j 6=k
j 6=i

xj!

= pk

(
N − 1

xi

)(
p−i
)xi
(
q+
)N−xi−1 (22)

Then

K

∑
i=1

pi
(N − 1)!

(xi − 1)! ∏j 6=i xj!
(

p+i
)xi−1 ∏

j 6=i

(
p−j
)xj

= pi
(N − 1)!

(xi − 1)! ∏j 6=i xj!
(

p+i
)xi−1 (q−

)N−1−(xi−1)

+ ∑
k 6=i

pk
(N − 1)!

(xk − 1)! ∏j 6=k xj!
(

p+k
)xk−1 ∏

j 6=k

(
p−j
)xj

= pi

(
N − 1
xi − 1

)(
p+i
)xi−1 (q−

)N−1−(xi−1)

+ ∑
k 6=i

pk

(
N − 1

xi

)(
p−i
)xi
(
q+
)N−xi−1

= pi

(
N − 1
xi − 1

)(
p+i
)xi−1 (q−

)N−1−(xi−1)

+ q
(

N − 1
xi

)(
p−i
)xi
(
q+
)N−xi−1

The above theorem shows another way the generalized multinomial distribution is an extension of
the generalized binomial distribution.
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4.2 Moment Generating Function
Theorem 4 (Moment Generating Function). The moment generating function of the generalized multinomial
distribution with K categories is given by

MX(t) =
K

∑
i=1

pieti

(
p+i eti + ∑

j 6=i
p−j etj

)n−1

(23)

where X = (X1, ..., XK), t = (t1, ..., tK).

Proof. By definition, MX(t) =E
[
etT X

]
=∑X etTXP(X= x) =∑X etTX ∑K

i=1 pi
(N−1)!

(xi−1)! ∏j 6=i xj !

(
p+i
)xi−1

∏j 6=i

(
p−j
)xj

.

Let Sm = ∑m
i=1 xi, and Expanding the above,

E
[
etT X

]
=

N

∑
x1=1

N−x1

∑
x2=0
· · ·

N−SK−2

∑
xk−1=0

etTX p1
(N − 1)!

(x1 − 1)! ∏k−1
j=2 xj!(N −∑K−1

j=1 xj)!

(
p+1
)x1−1

[
K−1

∏
j=2

(
p−j
)xj

]
(

p−K
)N−SK−1

+
K

∑
i=2

[
N

∑
xi=1

N−S1

∑
x1=0
· · ·

N−xi−Si−2

∑
xi−1=0

N−Si

∑
xi+1=0

· · ·
N−SK−2

∑
xK−1=0

etTX pi
(N − 1)!

(xi − 1)! ∏K−1
j=1,j 6=i xj!(N − SK−1)!

×
(

p+i
)xi−1




K−1

∏
j=1
j 6=i

(
p−j
)xj



(

p−K
)N−SK−1




Taking the first term, denoted T1, let y = x1 − 1. Then

T1 = p1et1
N−1

∑
y=0

N−1−y

∑
x2=0

· · ·
N−1−y−∑K−2

j=2 xj

∑
xK−1=0

et1y+t2x2+...+tK xK
(

p+1
)y
[

K−1

∏
j=2

(
p−j
)xj

]
(

p−K
)N−1−y−∑K−1

j=2 xj

The summation of the above is simply the moment generating function of a standard multinomial
distribution with probabilities p = (p+1 , p−2 , ..., p−K ). Thus,

T1 = p1et1

(
p+1 et1 +

K

∑
j=2

p−j etj

)N−1

A similar procedure follows with the remaining terms, and summing finishes the proof.

4.3 Moments of the Generalized Multinomial Distribution
Using the moment generating function in the standard way, the mean vector µ and the covariance matrix
Σ may be derived.

Expected Value The expected value of X is given by µ = np where p = (p1, ..., pK)

Covariance Matrix The entries of the covariance matrix are given by

Σij =

{
pi(1− pi)(n + δ(n− 1) + δ2(n− 1)(n− 2)), i = j
pi pj(δ(1− δ)(n− 2)(n− 1)− n), i 6= j

Note that if δ = 0, the generalized multinomial distribution reduces to the standard multinomial dis-
tribution and Σ becomes the familiar multinomial covariance matrix. The entries of the corresponding
correlation matrix are given by

ρ(Xi, Xj) = −
√

pi pj

(1− pi)(1− pj)

(
n− δ(n− 1)(n− 2)

n + δ(n− 1) + δ2(n− 1)(n− 2)

)
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If δ = 1, the variance of Xi tends to ∞ with n. This is intuitive, as δ = 1 implies perfect dependence of
ε2, ..., εn on the outcome of ε1. Thus, Xi will either be 0 or n, and this spread increases to ∞ with n.

5. Generating a Sequence of Correlated Categorical Random Variables

For brevity, we will take the acronym DCRV for a Dependent Categorical Random Variable. A DCRV
sequence ε = (ε1, ..., εn) is in itself a random variable, and thus has a probability distribution. In order to
provide an algorithm to generate such a sequence, we first derive this probability distribution.

5.1 Probability Distribution of a DCRV Sequence
The probability distribution of the DCRV sequence ε of length n is given formally in the following theorem.
The proof follows in a straightforward fashion from the construction in Section 2 and is therefore omitted.

Theorem 5 (Distribution of a DCRV Sequence). Let (Σ,F ,P) = ([0,1],B,µ). Let ε i : [0,1]→ {1, ...,K},
i = 1, ...,n, n ∈N be DCRVs as defined in (2). Let ε = (ε1, ..., εn) denote the DCRV sequence with observed values
e = (e1, ..., en). Then µ has the density

f (x) =
Kn

∑
i=1

Knmi1((i−1)/Kn,i/Kn](x) (24)

and

P(ε = e) =
∫

( i−1
Kn , i

Kn ]

f (x)dx = mi (25)

where mi is the mass allocated to the interval
( i−1

Kn , i
Kn

]
by (4) and i as the lexicographic order of e in the sample

space {1, ...,K}n given by the relation i
Kn = ∑Kn

j=1
ε j−1

K j .

5.2 Algorithm
We take a common notion of using a uniform random variable in order to generate the desired random
variable ε. For ε with distribution F(x) =

∫ x
0 f (y)dy, f (x) as in (24), it is clear that F is invertible with

inverse F−1. Thus, F−1(U) for U ∼ Uniform[0,1] has the same distribution as ε. Therefore, sampling u
from U is equivalent to the sample e = F−1(u) from ε.

In Section 2, we associated εn to the intervals given in (2)

εN = i on
(

l−1
KN , l

KN

]
, i ≡ l mod K, i = 1, ...,K− 1

εN = K on
(

l−1
KN , l

KN

]
, 0≡ l mod K

(26)

From the construction in Section 2, each sequence has a 1-1 correspondence with the interval
[ i−1

Kn , i
Kn

)

for a unique i = 1, ...,Kn. The probability of such a sequence can be found using Theorem 5:

P(ε = e) = F
([

i− 1
Kn ,

i
Kn

))
= mi = l ([si−1, si))

where l is the length of the above interval, and si = ∑i
j=1 mj. Therefore, we have now partitioned the

interval [0,1) according to the distribution of ε bijectively to the K−nary partition of [0,1) corresponding
to the particular sequence. Thus, sampling u ∈ [0,1) from a uniform distribution and finding the interval
[si−1, si) and corresponding i will yield the unique DCRV sequence.
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Algorithm Strategy: Given u∈ [0,1) and n∈N, find the unique interval [si−1, si), i = 1, ..., Kn that contains
u by “moving down the tree” and narrowing down the “search interval” until level n is reached.

We provide an explicit example prior to the pseudocode to illustrate the strategy.

5.2.1 Example DCRV Sequence Generation

b

bbb

b bbb bbb bb

1

111

2

2 2 2

3

3 3 3

1
3

1
3

1
3

2
3

2
3

2
3

1
6

1
6

1
6

1
6

1
6

1
6

[
0, 2

9

) [
2
9
, 5
18

) [
5
18
, 1
3

) [
1
3
, 5
9

) [
5
9
, 11
18

) [
11
18
, 2
3

) [
2
3
, 13
18

) [
13
18
, 7
9

) [
7
9
, 1

)

[
1
3
, 2
3

)[
0, 1

3

) [
2
3
, 1

)

Figure 3. Probabilistic partitions of [0,1) for a DCRV sequence of length 2 with K = 3.

Suppose K = 3, p1 = p2 = p3 = 1/3, and δ = 1/2, and suppose we wish to generate a DCRV sequence
of length 2. Figure 3 gives the probability flow and the corresponding probability intervals [si−1, si) that
partition [0,1) according to Theorem 5. Now, suppose u = 3

4 . We now illustrate the process of moving
down the above tree to generate the sequence.

1. The first level of the probability tree partitions the interval [0,1) into three intervals given in Figure 3.
u = 3

4 lies in the third interval, which corresponds to ε1 = 3. Thus, the first entry of e is given by
e1 = 3.

2. Next, the search interval is reduced to the interval from the first step [2/3,1). We then generate the
partitions of [2/3,1) by cumulatively adding p3 p−i , i = 1,2,3 to the left endpoint 2/3. Thus, the next
partition points are

• 2/3 + (1/3)(1/6) = 13/18,

• 2/3 + (1/3)(1/6) + (1/3)(1/6) = 7/9, and

• 2/3 + (1/3)(1/6) + (1/3)(1/6) + (1/3)(2/3) = 1.

Yielding the subintervals of [2/3,1):

• [2/3, 13/18),

• [13/18, 7/9), and

• [7/9, 1).

We now find the interval from above that contains u is the second: [13,18, 7/9). Thus, ε2 = 2.

Since we only sought a sequence of length 2, the algorithm is finished, and we have generated the
sequence e = (3,2). If a longer sequence is desired, we repeat step 2 until we are at level n.

In general, the algorithm is given below. The IntervalSearch(x, p = (p1, p2, ..., pm)) procedure finds the
interval i built from the partitions given in the vector p containing x via binary search. Let USample(n)
be the procedure that samples n instances of a uniformly distributed random variable. Also, let p′i =
(p−1 , ..., p−i−1, p+i , p−i+1, ..., pK) be the “altered” probability vector for the categorical variables 2, ...,n given
ε1 = i.
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Algorithm 1 DCRV Sequence Generation

1: procedure DCRVSEQUENCE(n, δ, p = (p1, ..., pK))
2: u← USample(1)
3: sequence← vector(n)
4: partitions← cumsum(p1, ..., pk)
5: s← IntervalSearch(u,partitions)
6: sequence[1]← s + 1
7: pnew← p′s+1
8: pprev← ps+1
9: for i = 2, i ≤ n, i+ = 1 do

10: endPointl ← partitions[s]
11: endPointr← partitions[s + 1]
12: partitions← endPointl + cumsum(pprev · pnew)
13: s← IntervalSearch(u, partitions)
14: sequence[i]← s + 1
15: l← length(sequence)
16: pprev← pprev · p′sequence[l]

return sequence

6. Conclusion
Categorical variables play a large role in many statistical and practical applications across disciplines.
Moreover, correlations among categorical variables are common and found in many scenarios, which can
cause problems with conventional assumptions. Different approaches have been taken to mitigate these
effects, because a mathematical framework to define a measure of dependency in a sequence of categorical
variables was not available. This paper formalized the notion of dependent categorical variables under a
first-dependence scheme and proved that such a sequence is identically distributed but now dependent.
With an identically distributed but dependent sequence, a generalized multinomial distribution was
derived in Section 3 and important properties of this distribution were provided. An efficient algorithm
to generate a sequence of dependent categorical random variables was given.
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