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Abstract. We review a 2011 technical report that discusses novel applications of chemical ki-
netics and artificial chemistries to queuing and flow models in computer networking. Basics of
chemical kinetics are covered, and additional analysis and commentary is given. Our overall rec-
ommendation is that this body of work deserves further study and implementation.

Perhaps the phrase “don’t reinvent the wheel” is overused. However, many newer disciplines,
particularly in the technology sector, seem to insist on it. One thing physical engineers learned
long ago was to study the world around them, work with it, and emulate it in their designs.
Network engineering should be no different. In a technical report from 2011, authors Thomas
Meyer and Christian Tschudin from the University of Basel describe a highly elegant natural
flowmanagement method [11] that exploits much of the hard work done in the chemistry sector
in chemical kinetics. They describe a scheduling approach that creates an artificial chemistry as
an analogue of a queueing network, and uses the Law of Mass Action to schedule events natu-
rally. The analysis of such networks utilizing their implementation is simplified regardless of the
depth onewishes to go into. In addition, they show a congestion control algorithmbased on this
framework is TCP fair and give evidence of actual implementation (a relief to practitioners).

This report will discuss their paper at length with a goal of covering not only their work,
but the underlying ideas. Since the paper requires knowledge of chemical kinetics, probability,
queueing theory, and networking, it should be of interest to specialists in these disciplines, but
a comprehensive discussion of the fundamentals glossed over in the paper would make dissemi-
nation more likely.

§1. Overall Review of the Paper
The paper is well written, readable, and quite clear despite the breadth of scope it contains.

It’s a major benefit to the authors and readers that their theoretical model has been tested in a
proof-of-concept network. The work shows much promise for the networking space as a whole.

§2. Overview of the Paper and Chemistry Basics
Just as in chemistry and physics, packet flow in a network hasmicroscopic behavior controlled

by various protocols, and macro-level dynamics. We see this in queueing theory as well–we can
study (typically in steady-state to help us out, but in transient state as well) the stochastic be-
havior of a queue, but find in many cases that even simple attempts to scale the analysis up to
networks (such as retainingmemorylessness) can become overwhelming. What ends up happen-
ing in many applied cases is a shift to an expression of the macro-level properties of the network
in terms of average flow. The cost of such smoothing is an unpreparedness to model and thus
deal effectively with erratic behavior. This leads to over-provisioning and other undesirable and
costly design choices to mitigate those risks.

Date: January 21, 2019.

1



Exploiting Chemistry for Better Packet FlowManagement R. Traylor, Ph. D.

Meyer and Tschudin have adapted decades of work in the chemical and physical literature
to take advantage of the Law of Mass Action, designing an artifical chemistry that takes an un-
conventional non-work-conserving approach to scheduling. Non-work-conserving queues add
a delay to packets and have tended to be avoided for various reasons, typically efficiency. Put
simply, they guarantee a constant wait time of a packet regardless of the number of packets in a
queue by varying the processing rate with fill level of the queue. The more packets in queue, the
faster the server processes those packets.

2.1. LawofMassAction inChemistry. If we have some chemical reactionwith reactants
A1,A2,. . .,An and products B1, B2, . . ., Bm, and the reaction is only forward (obviously we can
deal with both directions in chemistry tomodel chemical equilibrium, but only the forward part
makes sense for our networking analogue), then we may express the reaction as

A1 +A2 + . . . +An −→ B1 + B2 + . . . + Bn,
where k is the rate constant. In a simple reactionA → P, with P as the product, we can see the
rate expressed nicely in a very basic differential equation form [9]:

−dcA
dt

= k · cA

This should actually look somewhat similar to problems seem in basic calculus courses aswell.
The rate of change of draining the reactant is a direct function of the current concentration.

The reaction rate rf of a forward reaction is proportional to the concentrations of the reac-
tants:

rf = kf cA1 cA1 · · · cAN
for a set of reactantsAi.

2.2. The Queuing Analogue and assumptions. Meyer and Tschudin [11] express the
networking version of these chemical reactions in a very natural way. Packets are molecules. A
molecular species is a queue, so molecules of species X go into queue X . The molecular species
is a temporary buffer that stores particular packets types until they are consumed by a reaction
(processed by some server in the queueing space). FIFO (first-in-first-out) discipline is assumed.

Figure 1. Reproduced fromMeyer and Tschudin

Figure 1 from the technical report shows how a small system of reactions looks in the chemical
space and the queuing space. Where analysis and scheduling can get complicated is in the coupled
nature of the two reactions. The servers both drain packets from queue Y , so they are required
to coordinate their actions in some way. It’s important to note here that this equivalence rests
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on treating the queuing system as M/M/1 queues with a slightly modified birth-death process
representation.
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Figure 2. A Birth-Death Process with state-dependent service rate

Typically, in an M/M/1 queue, the mean service rate is constant. That is, the service rate is
independent of the state the birth-death process is in. However, if we model the Law of Mass
Action using a birth-death process, we’d see that the rate of service (analogously, the reaction
rate) changes depending on the fill-level of the queue (or concentration of the reactant). We’ll
investigate this further in the next sections, discussing their formal analysis.

§3. RelatedWork and precedent
The authors noted that adding packet delay is not unheard of in the networking space. Delay

Frame Queuing [12] utilizes non-work-conserving transmission at edge nodes in an ATM net-
work in order to guarantee upper bounds on delay and jitter for virtual circuits. Three other
researchers in 2008 (Kamimura et al) proposed a Constant Delay Queuing policy that assigns a
constant delay to each packet of a particular priority stream and forward other best-effort packets
during the delay [8].

§4. FormalModel of Artificial Packet Chemistry
Note: for those more interested in the application and implementation review and discussion, this
section can be skipped.

4.1. Artificial Chemistry. The notion of an formal artificial chemistry has been around
for some time. There is an excellent paper by Dittrich, Ziegler, and Banzhaf that gives a survey
of the work in this area [1]. Put simply, an artificial chemistry is a tuple (S,R ,A) where S =
{s1, s2, . . . sn} is a set of all validmolecules,R is a set of rules r that describe interactions between
molecules, andA is the reactor algorithm that determines how the set of rules inR is applied
to a collection of molecules termedP. P may be a reaction vessel, reactor, or “soup” (as Dittrich
et al call it). It’s also notable that P cannot be identical to S. (The reason given in the paper is
that some molecules might be present in many exemplars, but not all.)

To expand a bit more, we’ll note that the rules r ∈ R all take the form

s1 + s2 + . . . + sn −→ s′1 + s′2 + . . . + s′m,

where all s ∈ S. These rules are fairly abstract, and don’t explicitly seem to describe just a reactant
to product type reaction. These can be collisions or other types of interactions. The set S of valid
molecules presumably can be partitioned into disjoint subsets of different species of molecule as
well, though the representation in [1] is more general.

Regarding the reactor algorithmA,Dittrich et al [1] give several different descriptions/approaches
bywhich it canbedefined, dependingonwhether eachmolecule is treated explicitly, or allmolecules
of a type are represented by a single number (frequency or concentration):
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(1) Stochastic molecular collisions: Every single molecule is worked with, where a sample
of molecules from the reaction vessel P is drawn and the algorithm checks to see if a
particular rule r ∈ R applies.

(2) Differential Rate Equations: This approach seeks to describe the dynamics of a chemical
system using concentrations of molecular species. The rules under this algorithm take a
species approach:

r : a1s1 + a2s2 + . . . + aN sN −→ b1s1 + b2s2 + . . . + bN sN

Here, the si’s are species, not individual molecules. The coefficients are stoichiometric
factors of the reaction. They are simply indicator functions to denote whether species
si is a reactant or product. That is ai = 1 if and only if si is a reactant in the rule r, and
bi = 1 if and only of si is a product in the rule r. It is this form ofA that Meyer and
Tschudin [11] utilize in their packet chemistry.

The change of overall concentration (concentration denoted csi ) is given by a system
of differential equations

dcsi
dt

= (bi − ai)
N∏
j=1

cajsj , i = 1, . . . , N

according to theLawofMassActiondiscussed earlier. Theremaybemultiple rules/reactions
r ∈ R that affect the concentration of species si, so

dcsi
dt

=
∑
r∈R

(bri − ari ) N∏
j=1

c
arj
sj

 , i = 1, . . . , N

(3) Others: There are other options, such as metadynamics (where the number of species
and thus differential equations may change over time), mixed approaches, or symbolic
analysis of the differential equations.

According toDittrich et al [1], the reactor algorithmA depends on the representation of the
elements of si and thus the population. Meyer andTschudin utilize the second approach, though
they do not explicitly state this.

4.2. Artificial Packet Chemistry. Meyer and Tschudin adapt the artificial chemistry in
the previous section to suit their queuing networks in a given computer network. They add an el-
ementG to the artificial chemistry tuple to get an artificial packet chemistryPC = (G, S,R ,A),
where G is the digraph that gives the topology of the computer network. G consists of a set of
nodes VG which represent the chemical reaction vessels. (These were theP in the previous sec-
tion.), and EG is the set of directed arcs that represent network links connecting adjacent nodes.
(That is, if flow between nodes can happen in both directions, they will be represented by two
arcs. One going in one direction, one in the other.)

Here, since amolecular species is the analogue of a queue, S = ∪i∈V{Si}. Here, {Si} is a set of
all queue instances in a particular node i. At this point, some discussion on clarity is warranted.
It is possible to have more than one queueing instance (more than one molecular species) inside
each reaction vessel (here the nodes of the network). I don’t think this is meant to be a disjoint
union, since a reaction species can show up in more than one reaction vessel, so there may be
repeats of certain species in this representation of S when written this way. Perhaps it’s just a
nitpick, but it’s worth mentioning.
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R = ∪i∈V{Ri} gives all the flow relations among the queues. Here the rules r take form 2
ofA:

r ∈ Ri :
∑
s∈Si

as,rs −→
∑

s∈Si∪{Sj :j∈Ni}

bs,rs

The reaction rules basically describe what’s going on in a particular reaction vessel. We can
send packets to neighboring nodes/vessels (Ni is the notation for the neighborhood of node i,
or the set of adjacent nodes), or we can keep packets in the same node after the reaction is done.
The reactions that send packets to neighboring nodes are transmissions.

The mean reaction rate νr of each reaction is given by the Law of Mass Action as applied to
forward reactions:

νr = kr
∏
s∈S
cas,rs ,

just as described in the previous section.

Figure 3. Example network as an artificial packet chemistry

Figure 3 from Meyer and Tschudin gives an explicit example to help solidify these abstract
ideas. The network consists of 4 nodes, so V = {n1, n2, n3, n4}. Each node has a bidirectional
link with its neighbors, so E = {n1n2, n2n1, n2n3, n3n2, n2n4, n4n2, n3n4, n4n3}. In this case, we
only have one species of molecule (one queue) per node, so S = {X1, X2, X3, X4}. The set of
reactions is simply a first-order reaction per arc:R = {ra,b : Xa → Xb : ab ∈ E}

From a review standpoint, I would have liked to see a less trivial example, such as one with
multiple queues in a node, and rules thatmay keep packets in a node instead of just transmitting.
These types of scenarios would be interesting to model this way, and demonstrate better the
power of this approach.

§5. Formal Analyses of Artificial Packet Chemistry
This section can also be skipped for those less interested in the formal mathematics. Suffice it to
say that there are a multitude of already created methods now available for the elegant analysis
of computer networks when modeled by an artificial packet chemistry.

By representing packet flow in a computer network as an artificial chemistry, a multitude of
analyses are available, from high to low granularity. The authors give a heavily brief survey (and
a good bibliography) of works that can be utilized to analyze these networks pulled from the
physics and chemistry literature. A particular advantage of this method is the ability to study the
transient states of the network rather than just steady states. The authors also claim the ability to
determine the stability of the network flow based only on topology, a heavy advantage in design.
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5.1. StochasticAnalysisattheMicroscopicLevel. The stochastic behavior of chem-
ical reaction networks is described by the chemical master equation [10] which takes the form

dP
dt

= AP,

which is a differential equation describing the evolution of state probabilities for a system. Here
the states are discrete, and time is continuous. Thematrix A describes the transition rates (which
can also be kinetic or reaction rates), and the stochastic process described is a Markov jump-
process Since we’re on a network, the Markov jump process exists in an S-dimensional integer
lattice. Some work has been done to analyze several classes of chemical reaction networks to find
the steady-state probability distribution of the state space. For example, if the total number of
packets in the network has a bound, and the network contains only first order (unimolecular to
unimolecular) reactions, the steady state probability distribution for the lengths of the queues
in the network is a multinomial distribution [3]. On the other hand, if the network is open (we
allow packets to exit the network completely), then the steady state probability distribution of
the lengths of the queues follows a product of Poisson distributions (which is also Poisson) [3].
(This is an extremely desirable property, called a product-form.)

5.2. DeterministicApproximations. This is themost commonapproachutilized in com-
puter network analysis today, simply because networks are so large and complex that stochastic
modeling becomes too cumbersome. Here, the average trajectory is represented by a system of
ordinary differential equations, building a fluid model. One downside to this in the network-
ing space is that the analysis of protocols by this method requires manual extraction from source
code and accuracy is uncertain.

In the chemistry sector (andnow in thepacket chemistrymodel), obtaining a fluid approxima-
tion is not only easier, but shown to be accurate. There are links between the stochastic master
equation to several approximations [5, 6] including a deterministic ODE model. Gillespie [6]
showed that the ODEmodel accurately predicts the network flow trajectory in many cases.

One thing the authors note here is that the ODE model can be directly and automatically
generated from the network topology. For example, a single server with a single queue (M/M/1)
is simply modeled as one chemical speciesX . The arrival rate (inflow) is λ, and the service rate is
proportional to the queue length, so µ = kx, where x is the queue length. Then we get a simple
differential equation

ẋ = λ− kx,

describing the change in queue length as the difference of inflow and outflow. In the steady
state, ẋ = 0, which lets us look for a fixed point x̂ = λ

k . This is the steady-state queue length,
which allows us to derive the expected waiting time T = 1

k , showing that the latency of a packet
under this model is independent of the arrival rate and fill level. This model when implemented
automatically adjusts the service rate such that in the steady state, every packet sees the same
latency.

It’s also important to determine just how stable this steady state is by analyzing the sensitivity
of the network and states to perturbations. The authors list several citations to show that no new
approaches are needed to do this; one can look to signal and control theory literature. In partic-
ular, a network designer would desire to predict the stability of a complex network by studying
the topology as opposed to an analysis of the system of ODEs. Fortunately, modeling a network
this way allows for the use of the Deficiency Zero Theorem for complex chemical networks that
gives conditions for stability of steady-state [2, 7].
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The authors give a formal convergence proof that the example network of Figure 3 converges
to a stable fixed point and is asymptotically stable, comparing it to the proof of a similar protocol
Push-Sum (a gossip protocol in computer networks).

§6. Implementation of a Scheduler Based on the Law ofMass
Action

Likely, this section will be of greatest interest to network engineers. The authors have in-
deed designed and implemented a scheduler that utilizes this approach in an elegant fashion. In
addition, they discuss a “chemical control plane” that can automatically be compiled from the
abstract model. In another application, they relax the static nature of the network to allow an
active networking approach that reshapes the queuing network at run-time. The authors do dis-
cuss specifics of implementation, though this article will only briefly touch on it.

6.1. Scheduler. Each network node/reaction vessel has its own scheduler. The scheduler
computes the next occurrence time of each rule r ∈ Ri in its local node (this is equivalent to
“serving” or processing a packet or set of packets for bimolecular reactions) according to the Law
ofMass Action. It thenwill sort the events into a priority queue, wait until the first event occurs,
then execute. The main difficulty for a scheduler is to dynamically react and reschedule events
properly as packets are added to or drained from its queues. The authors note that an efficient
mass action scheduler can be implemented that requires only O(log(|R |)) time to enqueue or
dequeue packets. This is based on the Next ReactionMethod [4] of Gibson and Bruck.

Here we’ll recount an explicit example that illustrates the concept. If we return to Figure 1
reproduced below, we can walk throughMeyer and Tschudin’s scheduler implementation.

Figure 4. Reproduced fromMeyer and Tschudin

There are two queues, X and Y . Reaction 1 (Server 1) is bimolecular: X + Y → Z, so the
server pulls packets from twoqueues to execute the service. Reaction 2 (Server 2) is unimolecular,
pulling only from queue Y . If we assume the reaction constants k1 = 1000/ (packet · s) and
k2 = 1000/s, that X begins with two packets in its queue, and Y begins with 3 packets in its
queue, then the reaction rates νr , r = 1, 2 are respectively ν1 = k1cX cY = 1000 · 2 · 3 = 6000
and ν2 = k2cY = 1000 · 3 = 3000. The occurrence time is the reciprocal of the reaction rate,
so the occurrence times τr are respectively τ1 = 1

6ms and τ2 =
1
3ms. That means the first server

executes its action first, extracting packets from bothX and Y .
Since the occurrence time of r2 is coupledwith r1 (both servers pull fromqueueY ), the action

of r1 requires a rescheduling of r2. After r1 pulls a packet each from X and Y , there is 1 packet
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left in X and 2 in Y , which means we have to recalculate the rate ν2 = 1000 · 2 = 2000. The
occurrence time of r2 is at ms 1

3 , so its time of execution hasn’t arrived. But thanks for r1’s effect,
we have to rescale and reschedule the occurrence time of r2. This is done by the following:

τr,new −
νr,new
νr,old

(τr,old − tnow) + tnow,

where (τr,old − tnow) is the time remaining between the original execution time and the current
time. The multiplier in front is a scaling effect.

In this example, at tnow = 1/6ms, r2 was supposed to go at time 1/3ms, but will now be
prolonged.

A note here, I did the math for their specific example, and it seems off. I think the multiplier
should be as I’ve written above. The authors wrote the reciprocal, which prolongs too far. I’ll
work to contact the authors to verify this.

There are other timed scheduling algorithmsutilized in computer networking, such as Earliest
Deadline First, which require tagging each packet with a timestamp. This scheduler does not
require such an imposition.

6.2. TheChemicalControl Plane. The authors discuss another application of a LoMA-
scheduled queuing network – traffic shaping. Traffic shaping is amanagement technique utilized
to manipulate and prioritize network traffic with a goal of reduce the impact of heavy use cases.
It should be evident that this sort of management can either be extremely complex or lead to
ad-hoc “empirical” techniques.

Here, the authors describewhat they term as a chemical control plane that is intended to avoid
the messy necessity of sending packets through a complex queueing network in order to shape
packet flow as desired. The control plane takes advantage of concepts in enzymatic chemical
reactions in order to control flow. This is a different application than the flownetworks discussed
thus far (as I understand it).

Figure 5. The chemical flow architecture

Here the forwarding plane which executes actions is separated from the control plane which
will shape the flow of packets in the forwarding plane. The chemical control plane will dynami-
cally determine the service rates; the servers do not have them predefined. There are some num-
ber of FIFO queues n, one for each type of ingress packet flow and they are drained by one server
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each, representing a unimolecular reaction. In the control plane, each queue is represented by an
input species Xi and product species X∗i . The chemical reaction network lives abstractly in the
control plane, which is designed by a traffic engineer and can look like any digraph or network
he wishes.

Here we note the difference here between the prior sections, which dealt with physical flows
modeled by a chemical reaction network, and moving the chemical reaction network to an ab-
stract control plane. The queues now are not necessarily physically linked together, but we can
choose to couple them abstractly to shape traffic.

When apacket physically enters oneof thequeues, the control plane injects one instance of the
correspondingmolecule species into the abstract network. The scheduler described previously is
implemented and eventually an instance of the output species is generated. Once this happens,
the corresponding server in the forwarding plane physically processes the packet and dequeues
the next. The advantage here is that the abstract molecules in the control plane have no payload,
so implementation of thismodel only requires storing an integer value for each species that keeps
track of the number of packets in eachqueue. This allows analysis of behavior at the designphase.

In the simplest case, a unimolecular reactionX → X∗ in the chemical control plane acts like
a low-pass filter to the packet flow, smoothing bursts with high frequency components. If the
differential equation ẋ = λ − kx that approximates a unimolecular reaction is converted to the
frequency domain via the Laplace transform, the transfer function F (s) has a cut-off frequency
at k, the reaction constant:

F (s) =
µ(s)
λ(s)

=
k
s + k

That is, higher-frequency flows will be attenuated, much like dark glasses do with sunlight.
Applying this filter at an ingress point of a network leads to less chaotic traffic patterns, but with
a cost of a delay 1

k and memory to buffer the packets. Therefore, the mean queue length for this
single queue will grow proportionally with the delay and flow rate. That is, x̂ = λ

k
Another consideration of the LoMA queues described by Meyer and Tschudin that differs

from the standard M/M/1 queuing models is that the service rate is ultimately unbounded (for
infinite capacity queues/networks), since it is proportional to the queue length. This is undesir-
able to allow in a network, and thus the authors borrow from biological systems and design an
abstract enzymatic reaction to limit the rate of packet flow.

In biological systems, enzymes bind to reactant molecules X, called substrates in order to pre-
vent a particularmolecule from reacting immediately. Some amount of enzymemolecules E exist,
and they can either exist free-form or bound in a complex (EX). The more enzyme molecules in
bound form, the slower the rate of transmission grows for an increasing arrival rate. At equilib-
rium, the influx and efflux of substrate-enzyme complex molecules are equal according to Kir-
choff’s Law, so

kwcX cE = kscEX
Take a look at Figure 5 in the chemical control plane to see this action. The number of en-

zymes is constant, so cE + cEX = e0, which yields theMichaelis-Menten equation, expressing the
transmission rate µ in terms of the queue length cX .

µ = νmax
cX

KM + cX
,

which yields a hyperbolic saturation curve. νmax = kse0, and KM = ks
kw and specifies the concen-

tration ofX at which half of νmax is reached.
When the queue length at queue X is high, the transmission rate converges to νmax, and be-

haves like a normal unimolecular reaction when queue length is short.
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The authors also extend thismodel to handle dynamic changes to the topology of the queuing
network, which means that instances of queues and flow relations can be generated “on the fly,”
as it were. Tschudin [13] has created an executable string and multiset rewriting system called
Fraglets that allow for the implementation and running of protocols based on the ideas put forth
thus far. They describe in the paper how to implement explicitly the enzymatic rate-limiter in the
chemical control plane in Figure 5. In this implementation, rather than flow interactions being
static and determined at the design phase, each fraglet (packet) sorts itself into a queue. After a
packet is serviced, the header of a fraglet is treated as code, allowing a packet to determine its route
comparable to active networking. The relationship between the abstract model and execution
layer remains, which allows a mathematical model of the behavior of a Fraglets implementation
to be generated automatically, and a queuing network to be design and then realized easily in
Fraglets language.

§7. Chemical Congestion Control Algorithm
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As a final application of chemical networks, the authors combine LoMA-scheduled queues
and flow-filtering patterns to schedule segments of a transport protocol to control congestion.
To illustrate, they re-implement the additive increase/multiplicative decrease of the congestion
avoidance mode of TCP-Reno. The congestion control algorithm reacts to packet loss automat-
ically and naturally.

The reproduced figure above shows how the chemical congestion control is implemented as
a chemical reaction network (and by extension, a queueing network).

(1) Arriving packets are put into a queue D. The transmission rate νtx is controlled by the
quantity of pacemaker molecules R, so νtx = k1cRcD, once again according to the Law
of Mass Action. To mimic the additive (linear) increase mechanism of TCP-Reno, the
number of pace-maker molecules is increased at a rate νinc.

(2) Before packets are transmitted, they are tagged with a sequence number. If there is a gap
in the sequence number of acknowledgments from the destination, the source regener-
ates the packets at a queue L.

(3) A lost packetwill catalyze the destruction of pacemakermolecules by another reaction r2,
whichwill lead to the exponential decay ofR−molecules and thus decrease the transmis-
sion rate. However, we wish to prevent too fast a destruction of pacemaker molecules,
so a third reaction r3 will delay the destruction.

The authors encourage the use of such a reaction graph at the design phase of flow manage-
ment policies. The feedback nature is much clearer. In addition, the papers give a formal proof
that their congestion control model is TCP-fair at equilibrium; that is, the transmission rate is
proportional to 1√ploss where ploss is the probability of packet loss between source and destination.
They also discuss an extended version that reacts to variations in round trip time (RTT) variation
to more fully exploit the link bandwidths. The traffic statistics are not computed symbolically
with chemical reactions. Instead, another reaction builds a difference sch that at equilibrium
the fill level of its queue is proportional to the excess transmission rate. That signal decays the
pacemaker molecules. They also supply simulations to illustrate their implementations.

§8. DesignMotifs
This section is of a particular interest to me personally, and was treated the least. No design

process can ever be fully automated, but the authors claim tohave developed several designmotifs
of chemical reaction networks for a variety of purposes, including arithmetic computation of fill
levels to communication patterns (anycast, neighborhood discovery, etc). Unfortunately, they
do not give a direct citation as to where to look further. This report will be updated when such
information is found.
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Figure 6. The only two motifs provided

Figure 6 shows the only twomotifs provided by the authors. One for rate limiting (a) and the
other bimolecular reaction to compute the difference between arrival rates for two queues. The
concept of using these as design elements is extremely intriguing, and it was unfortunate that the
authors did not choose to expand this further.

Conclusion
Meyer andTschudin have given an extensive report showing how powerful the application of

chemical kinetics and chemical networks can be for the computer networking space. There are
several research opportunities available for further study and implementation. As yet, there have
been no citations of this work of note (the report came out in 2011), and thus the opportunity
seems ripe for exploration.
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